All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run

Research output: Contribution to journalArticleResearchpeer review

Authors

  • The LIGO Scientific Collaboration
  • The Virgo Collaboration
  • the KAGRA Collaboration
  • C. Affeldt
  • F. Bergamin
  • A. Bisht
  • N. Bode
  • P. Booker
  • M. Brinkmann
  • N. Gohlke
  • A. Heidt
  • J. Heinze
  • S. Hochheim
  • W. Kastaun
  • R. Kirchhoff
  • P. Koch
  • N. Koper
  • V. Kringel
  • N. V. Krishnendu
  • G. Kuehn
  • S. Leavey
  • J. Lehmann
  • J. Liu
  • J. Lough
  • M. Matiushechkina
  • M. Mehmet
  • F. Meylahn
  • N. Mukund
  • S. L. Nadji
  • F. Ohme
  • M. Schneewind
  • B. W. Schulte
  • B. F. Schutz
  • J. Venneberg
  • J. von Wrangel
  • M. Weinert
  • F. Wellmann
  • P. Weßels
  • J. Woehler

External Research Organisations

  • California Institute of Caltech (Caltech)
  • Louisiana State University
  • Australian National University
  • University of Adelaide
  • Maastricht University
  • Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
  • Universität Hamburg
  • Inter-University Centre for Astronomy and Astrophysics India
  • Cardiff University
View graph of relations

Details

Original languageEnglish
Article number102001
JournalPhysical Review D
Volume104
Issue number10
Early online date15 Nov 2021
Publication statusPublished - 15 Nov 2021

Abstract

After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into "short"1 s and "long"1 s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo's third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of 2-500 s in duration and a frequency band of 24-2048 Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude hrss as a function of waveform morphology. These hrss limits improve upon the results from the second observing run by an average factor of 1.8.

ASJC Scopus subject areas

Cite this

All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. / The LIGO Scientific Collaboration; The Virgo Collaboration; the KAGRA Collaboration et al.
In: Physical Review D, Vol. 104, No. 10, 102001, 15.11.2021.

Research output: Contribution to journalArticleResearchpeer review

The LIGO Scientific Collaboration, The Virgo Collaboration, the KAGRA Collaboration, Affeldt, C, Bergamin, F, Bisht, A, Bode, N, Booker, P, Brinkmann, M, Gohlke, N, Heidt, A, Heinze, J, Hochheim, S, Kastaun, W, Kirchhoff, R, Koch, P, Koper, N, Kringel, V, Krishnendu, NV, Kuehn, G, Leavey, S, Lehmann, J, Liu, J, Lough, J, Matiushechkina, M, Mehmet, M, Meylahn, F, Mukund, N, Nadji, SL, Ohme, F, Schneewind, M, Schulte, BW, Schutz, BF, Venneberg, J, von Wrangel, J, Weinert, M, Wellmann, F, Weßels, P & Woehler, J 2021, 'All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run', Physical Review D, vol. 104, no. 10, 102001. https://doi.org/10.1103/PhysRevD.104.102001
The LIGO Scientific Collaboration, The Virgo Collaboration, the KAGRA Collaboration, Affeldt, C., Bergamin, F., Bisht, A., Bode, N., Booker, P., Brinkmann, M., Gohlke, N., Heidt, A., Heinze, J., Hochheim, S., Kastaun, W., Kirchhoff, R., Koch, P., Koper, N., Kringel, V., Krishnendu, N. V., ... Woehler, J. (2021). All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D, 104(10), Article 102001. https://doi.org/10.1103/PhysRevD.104.102001
The LIGO Scientific Collaboration, The Virgo Collaboration, the KAGRA Collaboration, Affeldt C, Bergamin F, Bisht A et al. All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. Physical Review D. 2021 Nov 15;104(10):102001. Epub 2021 Nov 15. doi: 10.1103/PhysRevD.104.102001
The LIGO Scientific Collaboration ; The Virgo Collaboration ; the KAGRA Collaboration et al. / All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run. In: Physical Review D. 2021 ; Vol. 104, No. 10.
Download
@article{a19790eb4ee345ed8ca61f3e963768e5,
title = "All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run",
abstract = "After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into {"}short{"}1 s and {"}long{"}1 s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo's third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of 2-500 s in duration and a frequency band of 24-2048 Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude hrss as a function of waveform morphology. These hrss limits improve upon the results from the second observing run by an average factor of 1.8.",
author = "{The LIGO Scientific Collaboration} and {The Virgo Collaboration} and {the KAGRA Collaboration} and R. Abbott and Abbott, {T. D.} and Adya, {V. B.} and S. Bose and Brown, {D. D.} and S. Danilishin and K. Danzmann and M. Heurs and A. Hreibi and K. Isleif and H. L{\"u}ck and M. Nery and H. Vahlbruch and D. Wilken and B. Willke and Wu, {D. S.} and C. Affeldt and F. Bergamin and A. Bisht and N. Bode and P. Booker and M. Brinkmann and N. Gohlke and A. Heidt and J. Heinze and S. Hochheim and W. Kastaun and R. Kirchhoff and P. Koch and N. Koper and V. Kringel and Krishnendu, {N. V.} and G. Kuehn and S. Leavey and J. Lehmann and J. Liu and J. Lough and M. Matiushechkina and M. Mehmet and F. Meylahn and N. Mukund and Nadji, {S. L.} and F. Ohme and M. Schneewind and Schulte, {B. W.} and Schutz, {B. F.} and J. Venneberg and {von Wrangel}, J. and M. Weinert and F. Wellmann and P. We{\ss}els and J. Woehler",
note = "Funding Information: This material is based upon work supported by NSF{\textquoteright}s LIGO Laboratory, which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigaci{\'o}n, the Vicepresid{\`e}ncia i Conselleria d{\textquoteright}Innovaci{\'o}, Recerca i Turisme and the Conselleria d{\textquoteright}Educaci{\'o} i Universitat del Govern de les Illes Balears, the Conselleria d{\textquoteright}Innovaci{\'o}, Universitats, Ci{\`e}ncia i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concert{\'e}es (ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO), Belgium, the Paris {\^I}le-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN and CNRS for provision of computational resources. This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: Grants No. JP17H06358, No. JP17H06361, and No. JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) Grants No. 17H06133 and No. 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: Grant No. JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan under grants including Grant No. AS-CDA-105-M06, Advanced Technology Center (ATC) of NAOJ, Mechanical Engineering Center of KEK.",
year = "2021",
month = nov,
day = "15",
doi = "10.1103/PhysRevD.104.102001",
language = "English",
volume = "104",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Institute of Physics",
number = "10",

}

Download

TY - JOUR

T1 - All-sky search for long-duration gravitational-wave bursts in the third Advanced LIGO and Advanced Virgo run

AU - The LIGO Scientific Collaboration

AU - The Virgo Collaboration

AU - the KAGRA Collaboration

AU - Abbott, R.

AU - Abbott, T. D.

AU - Adya, V. B.

AU - Bose, S.

AU - Brown, D. D.

AU - Danilishin, S.

AU - Danzmann, K.

AU - Heurs, M.

AU - Hreibi, A.

AU - Isleif, K.

AU - Lück, H.

AU - Nery, M.

AU - Vahlbruch, H.

AU - Wilken, D.

AU - Willke, B.

AU - Wu, D. S.

AU - Affeldt, C.

AU - Bergamin, F.

AU - Bisht, A.

AU - Bode, N.

AU - Booker, P.

AU - Brinkmann, M.

AU - Gohlke, N.

AU - Heidt, A.

AU - Heinze, J.

AU - Hochheim, S.

AU - Kastaun, W.

AU - Kirchhoff, R.

AU - Koch, P.

AU - Koper, N.

AU - Kringel, V.

AU - Krishnendu, N. V.

AU - Kuehn, G.

AU - Leavey, S.

AU - Lehmann, J.

AU - Liu, J.

AU - Lough, J.

AU - Matiushechkina, M.

AU - Mehmet, M.

AU - Meylahn, F.

AU - Mukund, N.

AU - Nadji, S. L.

AU - Ohme, F.

AU - Schneewind, M.

AU - Schulte, B. W.

AU - Schutz, B. F.

AU - Venneberg, J.

AU - von Wrangel, J.

AU - Weinert, M.

AU - Wellmann, F.

AU - Weßels, P.

AU - Woehler, J.

N1 - Funding Information: This material is based upon work supported by NSF’s LIGO Laboratory, which is a major facility fully funded by the National Science Foundation. The authors also gratefully acknowledge the support of the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland and the Foundation for Polish Science (FNP), the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek—Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, the Natural Science and Engineering Research Council Canada, Canadian Foundation for Innovation (CFI), the Brazilian Ministry of Science, Technology, and Innovations, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan, the United States Department of Energy, and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN and CNRS for provision of computational resources. This work was supported by MEXT, JSPS Leading-edge Research Infrastructure Program, JSPS Grant-in-Aid for Specially Promoted Research 26000005, JSPS Grant-in-Aid for Scientific Research on Innovative Areas 2905: Grants No. JP17H06358, No. JP17H06361, and No. JP17H06364, JSPS Core-to-Core Program A. Advanced Research Networks, JSPS Grant-in-Aid for Scientific Research (S) Grants No. 17H06133 and No. 20H05639, JSPS Grant-in-Aid for Transformative Research Areas (A) 20A203: Grant No. JP20H05854, the joint research program of the Institute for Cosmic Ray Research, University of Tokyo, National Research Foundation (NRF) and Computing Infrastructure Project of KISTI-GSDC in Korea, Academia Sinica (AS), AS Grid Center (ASGC) and the Ministry of Science and Technology (MoST) in Taiwan under grants including Grant No. AS-CDA-105-M06, Advanced Technology Center (ATC) of NAOJ, Mechanical Engineering Center of KEK.

PY - 2021/11/15

Y1 - 2021/11/15

N2 - After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into "short"1 s and "long"1 s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo's third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of 2-500 s in duration and a frequency band of 24-2048 Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude hrss as a function of waveform morphology. These hrss limits improve upon the results from the second observing run by an average factor of 1.8.

AB - After the detection of gravitational waves from compact binary coalescences, the search for transient gravitational-wave signals with less well-defined waveforms for which matched filtering is not well suited is one of the frontiers for gravitational-wave astronomy. Broadly classified into "short"1 s and "long"1 s duration signals, these signals are expected from a variety of astrophysical processes, including non-axisymmetric deformations in magnetars or eccentric binary black hole coalescences. In this work, we present a search for long-duration gravitational-wave transients from Advanced LIGO and Advanced Virgo's third observing run from April 2019 to March 2020. For this search, we use minimal assumptions for the sky location, event time, waveform morphology, and duration of the source. The search covers the range of 2-500 s in duration and a frequency band of 24-2048 Hz. We find no significant triggers within this parameter space; we report sensitivity limits on the signal strength of gravitational waves characterized by the root-sum-square amplitude hrss as a function of waveform morphology. These hrss limits improve upon the results from the second observing run by an average factor of 1.8.

UR - http://www.scopus.com/inward/record.url?scp=85120443427&partnerID=8YFLogxK

U2 - 10.1103/PhysRevD.104.102001

DO - 10.1103/PhysRevD.104.102001

M3 - Article

AN - SCOPUS:85120443427

VL - 104

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 10

M1 - 102001

ER -

By the same author(s)