Details
Original language | English |
---|---|
Publication status | E-pub ahead of print - 9 Aug 2023 |
Abstract
Keywords
- math.AG
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
2023.
Research output: Working paper/Preprint › Preprint
}
TY - UNPB
T1 - Algebraic cycles on hyper-Kähler varieties of generalized Kummer type
AU - Floccari, Salvatore
AU - Varesco, Mauro
N1 - 10 pages, comments welcome
PY - 2023/8/9
Y1 - 2023/8/9
N2 - We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\"ahler variety of generalized Kummer type. For an arbitrary variety \(X\) of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology generated by \(H^2(X,\mathbb{Q})\) are algebraic.
AB - We prove the conjectures of Hodge and Tate for any four-dimensional hyper-K\"ahler variety of generalized Kummer type. For an arbitrary variety \(X\) of generalized Kummer type, we show that all Hodge classes in the subalgebra of the rational cohomology generated by \(H^2(X,\mathbb{Q})\) are algebraic.
KW - math.AG
U2 - 10.48550/arXiv.2308.04865
DO - 10.48550/arXiv.2308.04865
M3 - Preprint
BT - Algebraic cycles on hyper-Kähler varieties of generalized Kummer type
ER -