Details
Original language | English |
---|---|
Article number | 6 |
Journal | EPJ Quantum Technology |
Volume | 7 |
Issue number | 1 |
Early online date | 4 Mar 2020 |
Publication status | Published - Dec 2020 |
Abstract
We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. KCL-PH-TH/2019-65, CERN-TH-2019-126.
ASJC Scopus subject areas
- Engineering(all)
- Control and Systems Engineering
- Physics and Astronomy(all)
- Atomic and Molecular Physics, and Optics
- Physics and Astronomy(all)
- Condensed Matter Physics
- Engineering(all)
- Electrical and Electronic Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: EPJ Quantum Technology, Vol. 7, No. 1, 6, 12.2020.
Research output: Contribution to journal › Review article › Research › peer review
}
TY - JOUR
T1 - AEDGE
T2 - Atomic Experiment for Dark Matter and Gravity Exploration in Space
AU - El-Neaj, Yousef Abou
AU - Alpigiani, Cristiano
AU - Amairi-Pyka, Sana
AU - Araújo, Henrique
AU - Balaž, Antun
AU - Bassi, Angelo
AU - Bathe-Peters, Lars
AU - Battelier, Baptiste
AU - Belić, Aleksandar
AU - Bentine, Elliot
AU - Bernabeu, José
AU - Bertoldi, Andrea
AU - Bingham, Robert
AU - Blas, Diego
AU - Bolpasi, Vasiliki
AU - Bongs, Kai
AU - Bose, Sougato
AU - Bouyer, Philippe
AU - Bowcock, Themis
AU - Bowden, William
AU - Buchmueller, Oliver
AU - Burrage, Clare
AU - Calmet, Xavier
AU - Canuel, Benjamin
AU - Caramete, Laurentiu Ioan
AU - Carroll, Andrew
AU - Cella, Giancarlo
AU - Charmandaris, Vassilis
AU - Chattopadhyay, Swapan
AU - Chen, Xuzong
AU - Chiofalo, Maria Luisa
AU - Coleman, Jonathon
AU - Cotter, Joseph
AU - Cui, Yanou
AU - Derevianko, Andrei
AU - De Roeck, Albert
AU - Djordjevic, Goran S.
AU - Dornan, Peter
AU - Doser, Michael
AU - Drougkakis, Ioannis
AU - Dunningham, Jacob
AU - Dutan, Ioana
AU - Easo, Sajan
AU - Elertas, Gedminas
AU - Ellis, John
AU - El Sawy, Mai
AU - Fassi, Farida
AU - Felea, Daniel
AU - Feng, Chen Hao
AU - Flack, Robert
AU - Foot, Chris
AU - Fuentes, Ivette
AU - Gaaloul, Naceur
AU - Gauguet, Alexandre
AU - Geiger, Remi
AU - Gibson, Valerie
AU - Giudice, Gian
AU - Goldwin, Jon
AU - Grachov, Oleg
AU - Graham, Peter W.
AU - Grasso, Dario
AU - van der Grinten, Maurits
AU - Gündogan, Mustafa
AU - Haehnelt, Martin G.
AU - Harte, Tiffany
AU - Hees, Aurélien
AU - Hobson, Richard
AU - Hogan, Jason
AU - Holst, Bodil
AU - Holynski, Michael
AU - Kasevich, Mark
AU - Kavanagh, Bradley J.
AU - von Klitzing, Wolf
AU - Kovachy, Tim
AU - Krikler, Benjamin
AU - Krutzik, Markus
AU - Lewicki, Marek
AU - Lien, Yu Hung
AU - Liu, Miaoyuan
AU - Luciano, Giuseppe Gaetano
AU - Magnon, Alain
AU - Mahmoud, Mohammed Attia
AU - Malik, Sarah
AU - McCabe, Christopher
AU - Mitchell, Jeremiah
AU - Pahl, Julia
AU - Pal, Debapriya
AU - Pandey, Saurabh
AU - Papazoglou, Dimitris
AU - Paternostro, Mauro
AU - Penning, Bjoern
AU - Peters, Achim
AU - Prevedelli, Marco
AU - Puthiya-Veettil, Vishnupriya
AU - Quenby, John
AU - Rasel, Ernst
AU - Ravenhall, Sean
AU - Ringwood, Jack
AU - Roura, Albert
AU - Sabulsky, Dylan
AU - Sameed, Muhammed
AU - Sauer, Ben
AU - Schäffer, Stefan Alaric
AU - Schiller, Stephan
AU - Schkolnik, Vladimir
AU - Schlippert, Dennis
AU - Schubert, Christian
AU - Sfar, Haifa Rejeb
AU - Shayeghi, Armin
AU - Shipsey, Ian
AU - Signorini, Carla
AU - Singh, Yeshpal
AU - Soares-Santos, Marcelle
AU - Sorrentino, Fiodor
AU - Sumner, Timothy
AU - Tassis, Konstantinos
AU - Tentindo, Silvia
AU - Tino, Guglielmo Maria
AU - Tinsley, Jonathan N.
AU - Unwin, James
AU - Valenzuela, Tristan
AU - Vasilakis, Georgios
AU - Vaskonen, Ville
AU - Vogt, Christian
AU - Webber-Date, Alex
AU - Wenzlawski, André
AU - Windpassinger, Patrick
AU - Woltmann, Marian
AU - Yazgan, Efe
AU - Zhan, Ming Sheng
AU - Zou, Xinhao
AU - Zupan, Jure
N1 - Funding Information: Building upon the MAGIA experiment [ 94 , 95 ], MAGIA-Advanced is an R&D project funded by the Italian Ministry for Research and the INFN for a large-scale atom interferometer based on ultracold rubidium and strontium atoms. In addition to laboratory activity, the team is investigating the possibility of a 100–300 m atom interferometer to be installed in a vertical shaft in Sardinia. Its main goals are GW observation and the search for DM. Funding Information: We thank CERN for kindly hosting the workshop where the concept for this proposed experiment was developed.
PY - 2020/12
Y1 - 2020/12
N2 - We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. KCL-PH-TH/2019-65, CERN-TH-2019-126.
AB - We propose in this White Paper a concept for a space experiment using cold atoms to search for ultra-light dark matter, and to detect gravitational waves in the frequency range between the most sensitive ranges of LISA and the terrestrial LIGO/Virgo/KAGRA/INDIGO experiments. This interdisciplinary experiment, called Atomic Experiment for Dark Matter and Gravity Exploration (AEDGE), will also complement other planned searches for dark matter, and exploit synergies with other gravitational wave detectors. We give examples of the extended range of sensitivity to ultra-light dark matter offered by AEDGE, and how its gravitational-wave measurements could explore the assembly of super-massive black holes, first-order phase transitions in the early universe and cosmic strings. AEDGE will be based upon technologies now being developed for terrestrial experiments using cold atoms, and will benefit from the space experience obtained with, e.g., LISA and cold atom experiments in microgravity. KCL-PH-TH/2019-65, CERN-TH-2019-126.
UR - http://www.scopus.com/inward/record.url?scp=85081176051&partnerID=8YFLogxK
U2 - 10.1140/epjqt/s40507-020-0080-0
DO - 10.1140/epjqt/s40507-020-0080-0
M3 - Review article
AN - SCOPUS:85081176051
VL - 7
JO - EPJ Quantum Technology
JF - EPJ Quantum Technology
IS - 1
M1 - 6
ER -