Details
Original language | English |
---|---|
Article number | 012124 |
Journal | Physical Review A - Atomic, Molecular, and Optical Physics |
Volume | 92 |
Issue number | 1 |
Publication status | Published - 27 Jul 2015 |
Abstract
An ever broader range of physical platforms provides the possibility to study and engineer quantum dynamics under continuous measurements. In many experimental arrangements the system of interest is monitored by means of an ancillary device, whose sole purpose is to transduce the signal from the system to the measurement apparatus. Here we present a method of adiabatic elimination when the transducer consists of an arbitrary number of bosonic modes with Gaussian dynamics while the measured object can be any quantum system. Crucially, our approach can cope with the highly relevant case of finite temperature of the transducer, which is not easily achieved with other methods. We show that this approach provides a significant improvement in the readout of superconducting qubits in circuit QED already for a few thermal excitations and makes it possible to adiabatically eliminate optomechanical transducers relevant for frequency conversion between microwave and optical fields.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Atomic and Molecular Physics, and Optics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physical Review A - Atomic, Molecular, and Optical Physics, Vol. 92, No. 1, 012124, 27.07.2015.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Adiabatic elimination of Gaussian subsystems from quantum dynamics under continuous measurement
AU - Černotík, Ondřej
AU - Vasilyev, Denis V.
AU - Hammerer, Klemens
PY - 2015/7/27
Y1 - 2015/7/27
N2 - An ever broader range of physical platforms provides the possibility to study and engineer quantum dynamics under continuous measurements. In many experimental arrangements the system of interest is monitored by means of an ancillary device, whose sole purpose is to transduce the signal from the system to the measurement apparatus. Here we present a method of adiabatic elimination when the transducer consists of an arbitrary number of bosonic modes with Gaussian dynamics while the measured object can be any quantum system. Crucially, our approach can cope with the highly relevant case of finite temperature of the transducer, which is not easily achieved with other methods. We show that this approach provides a significant improvement in the readout of superconducting qubits in circuit QED already for a few thermal excitations and makes it possible to adiabatically eliminate optomechanical transducers relevant for frequency conversion between microwave and optical fields.
AB - An ever broader range of physical platforms provides the possibility to study and engineer quantum dynamics under continuous measurements. In many experimental arrangements the system of interest is monitored by means of an ancillary device, whose sole purpose is to transduce the signal from the system to the measurement apparatus. Here we present a method of adiabatic elimination when the transducer consists of an arbitrary number of bosonic modes with Gaussian dynamics while the measured object can be any quantum system. Crucially, our approach can cope with the highly relevant case of finite temperature of the transducer, which is not easily achieved with other methods. We show that this approach provides a significant improvement in the readout of superconducting qubits in circuit QED already for a few thermal excitations and makes it possible to adiabatically eliminate optomechanical transducers relevant for frequency conversion between microwave and optical fields.
UR - http://www.scopus.com/inward/record.url?scp=84938650775&partnerID=8YFLogxK
U2 - 10.1103/PhysRevA.92.012124
DO - 10.1103/PhysRevA.92.012124
M3 - Article
AN - SCOPUS:84938650775
VL - 92
JO - Physical Review A - Atomic, Molecular, and Optical Physics
JF - Physical Review A - Atomic, Molecular, and Optical Physics
SN - 1050-2947
IS - 1
M1 - 012124
ER -