Accurate atom counting for entanglement-enhanced atom interferometry

Research output: ThesisDoctoral thesis

Authors

  • Andreas Hüper
View graph of relations

Details

Original languageEnglish
QualificationDoctor rerum naturalium
Awarding Institution
Supervised by
  • Carsten Klempt, Supervisor
Date of Award17 Jun 2019
Place of PublicationHannover
Publication statusPublished - 2020

Abstract

Atom interferometers belong among today's most precise sensors and offer a broad range of possible metrological applications. Given their ability to measure accelerations and rotations precisely, they are suitable for inertial sensing, navigation and geodesy. Beyond this, they proved indispensible for time-keeping as well as fundamental research. This explains why the improvement of achievable sensitivities of atom interferometers is of particular interest. However the sensitivity of atom interferometers is fundamentally restricted by the standard quantum limit. The standard quantum limit can only be surpassed by employing entangled many-partice states. Entangled states, such as the twin-Fock state, allow atom interferometers to improve the phase sensitivity beyond the standard quantum limit, but they are reliant on an accurate detection of the interferometric out come. In this work, an experimental apparatus is designed and set up that will allow for routine generation of highly entangled twin-Fock states in a Rubidium-87 spinor Bose-Einstein condensate. As the main feature of this apparatus, an accurate atom counting fluorescence detection has been implemented. This detection achieves single-particle resolving fluorescence measurements for 1 up to 30 atoms. According to the noise analysis the single-atom resolution extends to a limiting atom number of 390(20) atoms. The implemented quadrupole coils with their strong gradient of up to 300 G/cm offer a tight confinement that in combination with the 55 W optical dipole trap laser will enable a fast repetition rate of the creation of highly entangled quantum states.

Cite this

Accurate atom counting for entanglement-enhanced atom interferometry. / Hüper, Andreas.
Hannover, 2020. 128 p.

Research output: ThesisDoctoral thesis

Hüper, A 2020, 'Accurate atom counting for entanglement-enhanced atom interferometry', Doctor rerum naturalium, Leibniz University Hannover, Hannover. https://doi.org/10.15488/9830
Hüper, A. (2020). Accurate atom counting for entanglement-enhanced atom interferometry. [Doctoral thesis, Leibniz University Hannover]. https://doi.org/10.15488/9830
Hüper A. Accurate atom counting for entanglement-enhanced atom interferometry. Hannover, 2020. 128 p. doi: 10.15488/9830
Download
@phdthesis{ee59f485e95c4b3ab2f82465b88004b9,
title = "Accurate atom counting for entanglement-enhanced atom interferometry",
abstract = "Atom interferometers belong among today's most precise sensors and offer a broad range of possible metrological applications. Given their ability to measure accelerations and rotations precisely, they are suitable for inertial sensing, navigation and geodesy. Beyond this, they proved indispensible for time-keeping as well as fundamental research. This explains why the improvement of achievable sensitivities of atom interferometers is of particular interest. However the sensitivity of atom interferometers is fundamentally restricted by the standard quantum limit. The standard quantum limit can only be surpassed by employing entangled many-partice states. Entangled states, such as the twin-Fock state, allow atom interferometers to improve the phase sensitivity beyond the standard quantum limit, but they are reliant on an accurate detection of the interferometric out come. In this work, an experimental apparatus is designed and set up that will allow for routine generation of highly entangled twin-Fock states in a Rubidium-87 spinor Bose-Einstein condensate. As the main feature of this apparatus, an accurate atom counting fluorescence detection has been implemented. This detection achieves single-particle resolving fluorescence measurements for 1 up to 30 atoms. According to the noise analysis the single-atom resolution extends to a limiting atom number of 390(20) atoms. The implemented quadrupole coils with their strong gradient of up to 300 G/cm offer a tight confinement that in combination with the 55 W optical dipole trap laser will enable a fast repetition rate of the creation of highly entangled quantum states.",
author = "Andreas H{\"u}per",
note = "Doctoral thesis",
year = "2020",
doi = "10.15488/9830",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Accurate atom counting for entanglement-enhanced atom interferometry

AU - Hüper, Andreas

N1 - Doctoral thesis

PY - 2020

Y1 - 2020

N2 - Atom interferometers belong among today's most precise sensors and offer a broad range of possible metrological applications. Given their ability to measure accelerations and rotations precisely, they are suitable for inertial sensing, navigation and geodesy. Beyond this, they proved indispensible for time-keeping as well as fundamental research. This explains why the improvement of achievable sensitivities of atom interferometers is of particular interest. However the sensitivity of atom interferometers is fundamentally restricted by the standard quantum limit. The standard quantum limit can only be surpassed by employing entangled many-partice states. Entangled states, such as the twin-Fock state, allow atom interferometers to improve the phase sensitivity beyond the standard quantum limit, but they are reliant on an accurate detection of the interferometric out come. In this work, an experimental apparatus is designed and set up that will allow for routine generation of highly entangled twin-Fock states in a Rubidium-87 spinor Bose-Einstein condensate. As the main feature of this apparatus, an accurate atom counting fluorescence detection has been implemented. This detection achieves single-particle resolving fluorescence measurements for 1 up to 30 atoms. According to the noise analysis the single-atom resolution extends to a limiting atom number of 390(20) atoms. The implemented quadrupole coils with their strong gradient of up to 300 G/cm offer a tight confinement that in combination with the 55 W optical dipole trap laser will enable a fast repetition rate of the creation of highly entangled quantum states.

AB - Atom interferometers belong among today's most precise sensors and offer a broad range of possible metrological applications. Given their ability to measure accelerations and rotations precisely, they are suitable for inertial sensing, navigation and geodesy. Beyond this, they proved indispensible for time-keeping as well as fundamental research. This explains why the improvement of achievable sensitivities of atom interferometers is of particular interest. However the sensitivity of atom interferometers is fundamentally restricted by the standard quantum limit. The standard quantum limit can only be surpassed by employing entangled many-partice states. Entangled states, such as the twin-Fock state, allow atom interferometers to improve the phase sensitivity beyond the standard quantum limit, but they are reliant on an accurate detection of the interferometric out come. In this work, an experimental apparatus is designed and set up that will allow for routine generation of highly entangled twin-Fock states in a Rubidium-87 spinor Bose-Einstein condensate. As the main feature of this apparatus, an accurate atom counting fluorescence detection has been implemented. This detection achieves single-particle resolving fluorescence measurements for 1 up to 30 atoms. According to the noise analysis the single-atom resolution extends to a limiting atom number of 390(20) atoms. The implemented quadrupole coils with their strong gradient of up to 300 G/cm offer a tight confinement that in combination with the 55 W optical dipole trap laser will enable a fast repetition rate of the creation of highly entangled quantum states.

U2 - 10.15488/9830

DO - 10.15488/9830

M3 - Doctoral thesis

CY - Hannover

ER -