Details
Original language | English |
---|---|
Journal | Light: Science and Applications |
Volume | 7 |
Publication status | Published - 30 May 2018 |
Abstract
The recent discovery of gravitational waves (GW) by Advanced LIGO (Laser Interferometric Gravitational-wave Observatory) has impressively launched the novel field of gravitational astronomy and allowed us to glimpse exciting objects about which we could previously only speculate. Further sensitivity improvements at the low-frequency end of the detection band of future GW observatories must rely on quantum non-demolition (QND) methods to suppress fundamental quantum fluctuations of the light fields used to readout the GW signal. Here we present a novel concept of how to turn a conventional Michelson interferometer into a QND speed-meter interferometer with coherently suppressed quantum back-action noise. We use two orthogonal polarizations of light and an optical circulator to couple them. We carry out a detailed analysis of how imperfections and optical loss influence the achievable sensitivity. We find that the proposed configuration significantly enhances the low-frequency sensitivity and increases the observable event rate of binary black-hole coalescences in the range of 102 - 103,M⊙ 1 0 2 - 1 0 3 M ⊙ by a factor of up to ∼300.
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Physics and Astronomy(all)
- Atomic and Molecular Physics, and Optics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Light: Science and Applications, Vol. 7, 30.05.2018.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - A new quantum speed-meter interferometer: measuring speed to search for intermediate mass black holes
AU - Danilishin, Stefan L.
AU - Knyazev, Eugene
AU - Voronchev, Nikita V.
AU - Khalili, Farid Ya
AU - Gräf, Christian
AU - Steinlechner, Sebastian
AU - Hennig, Jan Simon
AU - Hild, Stefan
N1 - Funding information: This work would not have been possible without the support of and insightful conversations with our colleagues from the Interferometry group of the Institute for Gravitational Research of the University of Glasgow. The authors are very grateful as well to our colleagues from the LIGO-Virgo Scientific Collaboration (LVC) for illuminating discussions and invaluable feedback on the research presented in this paper. S.H., S.L.D., C.G., J.-S.H., and S.S. were supported by the European Research Council (ERC-2012-StG: 307245). S.L.D. was supported by the Lower Saxonian Ministry of Science and Culture within the frame of “Research Line” (Forschungslinie) QUANOMET – Quantum-and Nano-Metrology. S.L.D. and S.H. were supported by the Royal Society International Exchanges Scheme Grant IE160125. The work of E.K. and F.Y.K. was supported by the Russian Foundation for Basic Research Grants 14-02-00399 and 16-52-10069. F.Y.K. was also supported by the LIGO NSF Grant PHY-1305863. S.S. was supported by the European Commission Horizon 2020 Marie-Sk?odowska-Curie IF Actions, grant agreement 658366.
PY - 2018/5/30
Y1 - 2018/5/30
N2 - The recent discovery of gravitational waves (GW) by Advanced LIGO (Laser Interferometric Gravitational-wave Observatory) has impressively launched the novel field of gravitational astronomy and allowed us to glimpse exciting objects about which we could previously only speculate. Further sensitivity improvements at the low-frequency end of the detection band of future GW observatories must rely on quantum non-demolition (QND) methods to suppress fundamental quantum fluctuations of the light fields used to readout the GW signal. Here we present a novel concept of how to turn a conventional Michelson interferometer into a QND speed-meter interferometer with coherently suppressed quantum back-action noise. We use two orthogonal polarizations of light and an optical circulator to couple them. We carry out a detailed analysis of how imperfections and optical loss influence the achievable sensitivity. We find that the proposed configuration significantly enhances the low-frequency sensitivity and increases the observable event rate of binary black-hole coalescences in the range of 102 - 103,M⊙ 1 0 2 - 1 0 3 M ⊙ by a factor of up to ∼300.
AB - The recent discovery of gravitational waves (GW) by Advanced LIGO (Laser Interferometric Gravitational-wave Observatory) has impressively launched the novel field of gravitational astronomy and allowed us to glimpse exciting objects about which we could previously only speculate. Further sensitivity improvements at the low-frequency end of the detection band of future GW observatories must rely on quantum non-demolition (QND) methods to suppress fundamental quantum fluctuations of the light fields used to readout the GW signal. Here we present a novel concept of how to turn a conventional Michelson interferometer into a QND speed-meter interferometer with coherently suppressed quantum back-action noise. We use two orthogonal polarizations of light and an optical circulator to couple them. We carry out a detailed analysis of how imperfections and optical loss influence the achievable sensitivity. We find that the proposed configuration significantly enhances the low-frequency sensitivity and increases the observable event rate of binary black-hole coalescences in the range of 102 - 103,M⊙ 1 0 2 - 1 0 3 M ⊙ by a factor of up to ∼300.
UR - http://www.scopus.com/inward/record.url?scp=85047899215&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1702.01029
DO - 10.48550/arXiv.1702.01029
M3 - Article
AN - SCOPUS:85047899215
VL - 7
JO - Light: Science and Applications
JF - Light: Science and Applications
SN - 2095-5545
ER -