Details
Original language | English |
---|---|
Number of pages | 25 |
Journal | Computational mechanics |
Early online date | 2 Jul 2024 |
Publication status | E-pub ahead of print - 2 Jul 2024 |
Abstract
As a physical fact, randomness is an inherent and ineliminable aspect in all physical measurements and engineering production. As a consequence, material parameters, serving as input data, are only known in a stochastic sense and thus, also output parameters, e.g., stresses, fluctuate. For the estimation of those fluctuations it is imperative to incoporate randomness into engineering simulations. Unfortunately, incorporating uncertain parameters into the modeling and simulation of inelastic materials is often computationally expensive, as many individual simulations may have to be performed. The promise of the proposed method is simple: using extended material models to include stochasticity reduces the number of needed simulations to one. This single computation is cheap, i.e., it has a comparable numerical effort as a single standard simulation. The extended material models are easily derived from standard deterministic material models and account for the effect of uncertainty by an extended set of deterministic material parameters. The time-dependent and stochastic aspects of the material behavior are separated, such that only the deterministic time-dependent behavior of the extended material model needs to be simulated. The effect of stochasticity is then included during post-processing. The feasibility of this approach is demonstrated for three different and highly non-linear material models: viscous damage, viscous phase transformations and elasto-viscoplasticity. A comparison to the Monte Carlo method showcases that the method is indeed able to provide reliable estimates of the expectation and variance of internal variables and stress at a minimal fraction of the computation cost.
Keywords
- Inelasticity, Time-separated stochastic mechanics, Uncertainty
ASJC Scopus subject areas
- Engineering(all)
- Computational Mechanics
- Engineering(all)
- Ocean Engineering
- Engineering(all)
- Mechanical Engineering
- Computer Science(all)
- Computational Theory and Mathematics
- Mathematics(all)
- Computational Mathematics
- Mathematics(all)
- Applied Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Computational mechanics, 02.07.2024.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - A new paradigm for the efficient inclusion of stochasticity in engineering simulations
T2 - Time-separated stochastic mechanics
AU - Geisler, Hendrik
AU - Erdogan, Cem
AU - Nagel, Jan
AU - Junker, Philipp
N1 - Publisher Copyright: © The Author(s) 2024.
PY - 2024/7/2
Y1 - 2024/7/2
N2 - As a physical fact, randomness is an inherent and ineliminable aspect in all physical measurements and engineering production. As a consequence, material parameters, serving as input data, are only known in a stochastic sense and thus, also output parameters, e.g., stresses, fluctuate. For the estimation of those fluctuations it is imperative to incoporate randomness into engineering simulations. Unfortunately, incorporating uncertain parameters into the modeling and simulation of inelastic materials is often computationally expensive, as many individual simulations may have to be performed. The promise of the proposed method is simple: using extended material models to include stochasticity reduces the number of needed simulations to one. This single computation is cheap, i.e., it has a comparable numerical effort as a single standard simulation. The extended material models are easily derived from standard deterministic material models and account for the effect of uncertainty by an extended set of deterministic material parameters. The time-dependent and stochastic aspects of the material behavior are separated, such that only the deterministic time-dependent behavior of the extended material model needs to be simulated. The effect of stochasticity is then included during post-processing. The feasibility of this approach is demonstrated for three different and highly non-linear material models: viscous damage, viscous phase transformations and elasto-viscoplasticity. A comparison to the Monte Carlo method showcases that the method is indeed able to provide reliable estimates of the expectation and variance of internal variables and stress at a minimal fraction of the computation cost.
AB - As a physical fact, randomness is an inherent and ineliminable aspect in all physical measurements and engineering production. As a consequence, material parameters, serving as input data, are only known in a stochastic sense and thus, also output parameters, e.g., stresses, fluctuate. For the estimation of those fluctuations it is imperative to incoporate randomness into engineering simulations. Unfortunately, incorporating uncertain parameters into the modeling and simulation of inelastic materials is often computationally expensive, as many individual simulations may have to be performed. The promise of the proposed method is simple: using extended material models to include stochasticity reduces the number of needed simulations to one. This single computation is cheap, i.e., it has a comparable numerical effort as a single standard simulation. The extended material models are easily derived from standard deterministic material models and account for the effect of uncertainty by an extended set of deterministic material parameters. The time-dependent and stochastic aspects of the material behavior are separated, such that only the deterministic time-dependent behavior of the extended material model needs to be simulated. The effect of stochasticity is then included during post-processing. The feasibility of this approach is demonstrated for three different and highly non-linear material models: viscous damage, viscous phase transformations and elasto-viscoplasticity. A comparison to the Monte Carlo method showcases that the method is indeed able to provide reliable estimates of the expectation and variance of internal variables and stress at a minimal fraction of the computation cost.
KW - Inelasticity
KW - Time-separated stochastic mechanics
KW - Uncertainty
UR - http://www.scopus.com/inward/record.url?scp=85197304401&partnerID=8YFLogxK
U2 - 10.1007/s00466-024-02500-5
DO - 10.1007/s00466-024-02500-5
M3 - Article
AN - SCOPUS:85197304401
JO - Computational mechanics
JF - Computational mechanics
SN - 0178-7675
ER -