A larger TatBC complex associates with TatA clusters for transport of folded proteins across the bacterial cytoplasmic membrane

Research output: Contribution to journalArticleResearchpeer review

Authors

Research Organisations

View graph of relations

Details

Original languageEnglish
Article number13754
JournalScientific Reports
Volume14
Issue number1
Publication statusPublished - 14 Jun 2024

Abstract

The twin-arginine translocation (Tat) system transports folded proteins across energized biological membranes in bacteria, plastids, and plant mitochondria. In Escherichia coli, the three membrane proteins TatA, TatB and TatC associate to enable Tat transport. While TatB and TatC together form complexes that bind Tat-dependently transported proteins, the TatA component is responsible for the permeabilization of the membrane during transport. With wild type Tat systems, the TatB- and TatC-containing Tat complexes TC1 and TC2 can be differentiated. Their TatA content has not been resolved, nor could they be assigned to any step of the translocation mechanism. It is therefore a key question of current Tat research to understand how TatA associates with Tat systems during transport. By analyzing affinity-purified Tat complexes with mutations in TatC that selectively enrich either TC1 or TC2, we now for the first time demonstrate that both Tat complexes associate with TatA, but the larger TC2 recruits significantly more TatA than the smaller TC1. Most TatA co-purified as multimeric clusters. Using site-specific photo cross-linking, we could detect TatA–TatC interactions only near TatC transmembrane helices 5 and 6. Substrate-binding did not change the interacting positions but affected the stability of the interaction, pointing to a substrate-induced conformational transition. Together, our findings indicate that TatA clusters associate with TatBC without being integrated into the complex by major rearrangements. The increased TatA affinity of the larger Tat complex TC2 suggests that functional assembly is advanced in this complex.

ASJC Scopus subject areas

Cite this

A larger TatBC complex associates with TatA clusters for transport of folded proteins across the bacterial cytoplasmic membrane. / Werner, Max Hinrich; Mehner-Breitfeld, Denise; Brüser, Thomas.
In: Scientific Reports, Vol. 14, No. 1, 13754, 14.06.2024.

Research output: Contribution to journalArticleResearchpeer review

Download
@article{0d8dbd6015a140998d22930aa720a379,
title = "A larger TatBC complex associates with TatA clusters for transport of folded proteins across the bacterial cytoplasmic membrane",
abstract = "The twin-arginine translocation (Tat) system transports folded proteins across energized biological membranes in bacteria, plastids, and plant mitochondria. In Escherichia coli, the three membrane proteins TatA, TatB and TatC associate to enable Tat transport. While TatB and TatC together form complexes that bind Tat-dependently transported proteins, the TatA component is responsible for the permeabilization of the membrane during transport. With wild type Tat systems, the TatB- and TatC-containing Tat complexes TC1 and TC2 can be differentiated. Their TatA content has not been resolved, nor could they be assigned to any step of the translocation mechanism. It is therefore a key question of current Tat research to understand how TatA associates with Tat systems during transport. By analyzing affinity-purified Tat complexes with mutations in TatC that selectively enrich either TC1 or TC2, we now for the first time demonstrate that both Tat complexes associate with TatA, but the larger TC2 recruits significantly more TatA than the smaller TC1. Most TatA co-purified as multimeric clusters. Using site-specific photo cross-linking, we could detect TatA–TatC interactions only near TatC transmembrane helices 5 and 6. Substrate-binding did not change the interacting positions but affected the stability of the interaction, pointing to a substrate-induced conformational transition. Together, our findings indicate that TatA clusters associate with TatBC without being integrated into the complex by major rearrangements. The increased TatA affinity of the larger Tat complex TC2 suggests that functional assembly is advanced in this complex.",
author = "Werner, {Max Hinrich} and Denise Mehner-Breitfeld and Thomas Br{\"u}ser",
note = "Publisher Copyright: {\textcopyright} The Author(s) 2024.",
year = "2024",
month = jun,
day = "14",
doi = "10.1038/s41598-024-64547-x",
language = "English",
volume = "14",
journal = "Scientific Reports",
issn = "2045-2322",
publisher = "Nature Publishing Group",
number = "1",

}

Download

TY - JOUR

T1 - A larger TatBC complex associates with TatA clusters for transport of folded proteins across the bacterial cytoplasmic membrane

AU - Werner, Max Hinrich

AU - Mehner-Breitfeld, Denise

AU - Brüser, Thomas

N1 - Publisher Copyright: © The Author(s) 2024.

PY - 2024/6/14

Y1 - 2024/6/14

N2 - The twin-arginine translocation (Tat) system transports folded proteins across energized biological membranes in bacteria, plastids, and plant mitochondria. In Escherichia coli, the three membrane proteins TatA, TatB and TatC associate to enable Tat transport. While TatB and TatC together form complexes that bind Tat-dependently transported proteins, the TatA component is responsible for the permeabilization of the membrane during transport. With wild type Tat systems, the TatB- and TatC-containing Tat complexes TC1 and TC2 can be differentiated. Their TatA content has not been resolved, nor could they be assigned to any step of the translocation mechanism. It is therefore a key question of current Tat research to understand how TatA associates with Tat systems during transport. By analyzing affinity-purified Tat complexes with mutations in TatC that selectively enrich either TC1 or TC2, we now for the first time demonstrate that both Tat complexes associate with TatA, but the larger TC2 recruits significantly more TatA than the smaller TC1. Most TatA co-purified as multimeric clusters. Using site-specific photo cross-linking, we could detect TatA–TatC interactions only near TatC transmembrane helices 5 and 6. Substrate-binding did not change the interacting positions but affected the stability of the interaction, pointing to a substrate-induced conformational transition. Together, our findings indicate that TatA clusters associate with TatBC without being integrated into the complex by major rearrangements. The increased TatA affinity of the larger Tat complex TC2 suggests that functional assembly is advanced in this complex.

AB - The twin-arginine translocation (Tat) system transports folded proteins across energized biological membranes in bacteria, plastids, and plant mitochondria. In Escherichia coli, the three membrane proteins TatA, TatB and TatC associate to enable Tat transport. While TatB and TatC together form complexes that bind Tat-dependently transported proteins, the TatA component is responsible for the permeabilization of the membrane during transport. With wild type Tat systems, the TatB- and TatC-containing Tat complexes TC1 and TC2 can be differentiated. Their TatA content has not been resolved, nor could they be assigned to any step of the translocation mechanism. It is therefore a key question of current Tat research to understand how TatA associates with Tat systems during transport. By analyzing affinity-purified Tat complexes with mutations in TatC that selectively enrich either TC1 or TC2, we now for the first time demonstrate that both Tat complexes associate with TatA, but the larger TC2 recruits significantly more TatA than the smaller TC1. Most TatA co-purified as multimeric clusters. Using site-specific photo cross-linking, we could detect TatA–TatC interactions only near TatC transmembrane helices 5 and 6. Substrate-binding did not change the interacting positions but affected the stability of the interaction, pointing to a substrate-induced conformational transition. Together, our findings indicate that TatA clusters associate with TatBC without being integrated into the complex by major rearrangements. The increased TatA affinity of the larger Tat complex TC2 suggests that functional assembly is advanced in this complex.

UR - http://www.scopus.com/inward/record.url?scp=85196026407&partnerID=8YFLogxK

U2 - 10.1038/s41598-024-64547-x

DO - 10.1038/s41598-024-64547-x

M3 - Article

C2 - 38877109

AN - SCOPUS:85196026407

VL - 14

JO - Scientific Reports

JF - Scientific Reports

SN - 2045-2322

IS - 1

M1 - 13754

ER -

By the same author(s)