Details
Original language | English |
---|---|
Pages (from-to) | 63-80 |
Number of pages | 18 |
Journal | ISPRS Journal of Photogrammetry and Remote Sensing |
Volume | 130 |
Early online date | 31 May 2017 |
Publication status | Published - Aug 2017 |
Abstract
We propose a new approach for the simultaneous classification of land cover and land use considering spatial as well as semantic context. We apply a Conditional Random Fields (CRF) consisting of a land cover and a land use layer. In the land cover layer of the CRF, the nodes represent super-pixels; in the land use layer, the nodes correspond to objects from a geospatial database. Intra-layer edges of the CRF model spatial dependencies between neighbouring image sites. All spatially overlapping sites in both layers are connected by inter-layer edges, which leads to higher order cliques modelling the semantic relation between all land cover and land use sites in the clique. A generic formulation of the higher order potential is proposed. In order to enable efficient inference in the two-layer higher order CRF, we propose an iterative inference procedure in which the two classification tasks mutually influence each other. We integrate contextual relations between land cover and land use in the classification process by using contextual features describing the complex dependencies of all nodes in a higher order clique. These features are incorporated in a discriminative classifier, which approximates the higher order potentials during the inference procedure. The approach is designed for input data based on aerial images. Experiments are carried out on two test sites to evaluate the performance of the proposed method. The experiments show that the classification results are improved compared to the results of a non-contextual classifier. For land cover classification, the result is much more homogeneous and the delineation of land cover segments is improved. For the land use classification, an improvement is mainly achieved for land use objects showing non-typical characteristics or similarities to other land use classes. Furthermore, we have shown that the size of the super-pixels has an influence on the level of detail of the classification result, but also on the degree of smoothing induced by the segmentation method, which is especially beneficial for land cover classes covering large, homogeneous areas.
Keywords
- Aerial imagery, Conditional random fields, Contextual classification, Higher order potential, Land cover, Land use
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Atomic and Molecular Physics, and Optics
- Engineering(all)
- Engineering (miscellaneous)
- Computer Science(all)
- Computer Science Applications
- Earth and Planetary Sciences(all)
- Computers in Earth Sciences
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 130, 08.2017, p. 63-80.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - A higher order conditional random field model for simultaneous classification of land cover and land use
AU - Albert, Lena
AU - Rottensteiner, Franz
AU - Heipke, Christian
N1 - Publisher Copyright: © 2017 Copyright: Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/8
Y1 - 2017/8
N2 - We propose a new approach for the simultaneous classification of land cover and land use considering spatial as well as semantic context. We apply a Conditional Random Fields (CRF) consisting of a land cover and a land use layer. In the land cover layer of the CRF, the nodes represent super-pixels; in the land use layer, the nodes correspond to objects from a geospatial database. Intra-layer edges of the CRF model spatial dependencies between neighbouring image sites. All spatially overlapping sites in both layers are connected by inter-layer edges, which leads to higher order cliques modelling the semantic relation between all land cover and land use sites in the clique. A generic formulation of the higher order potential is proposed. In order to enable efficient inference in the two-layer higher order CRF, we propose an iterative inference procedure in which the two classification tasks mutually influence each other. We integrate contextual relations between land cover and land use in the classification process by using contextual features describing the complex dependencies of all nodes in a higher order clique. These features are incorporated in a discriminative classifier, which approximates the higher order potentials during the inference procedure. The approach is designed for input data based on aerial images. Experiments are carried out on two test sites to evaluate the performance of the proposed method. The experiments show that the classification results are improved compared to the results of a non-contextual classifier. For land cover classification, the result is much more homogeneous and the delineation of land cover segments is improved. For the land use classification, an improvement is mainly achieved for land use objects showing non-typical characteristics or similarities to other land use classes. Furthermore, we have shown that the size of the super-pixels has an influence on the level of detail of the classification result, but also on the degree of smoothing induced by the segmentation method, which is especially beneficial for land cover classes covering large, homogeneous areas.
AB - We propose a new approach for the simultaneous classification of land cover and land use considering spatial as well as semantic context. We apply a Conditional Random Fields (CRF) consisting of a land cover and a land use layer. In the land cover layer of the CRF, the nodes represent super-pixels; in the land use layer, the nodes correspond to objects from a geospatial database. Intra-layer edges of the CRF model spatial dependencies between neighbouring image sites. All spatially overlapping sites in both layers are connected by inter-layer edges, which leads to higher order cliques modelling the semantic relation between all land cover and land use sites in the clique. A generic formulation of the higher order potential is proposed. In order to enable efficient inference in the two-layer higher order CRF, we propose an iterative inference procedure in which the two classification tasks mutually influence each other. We integrate contextual relations between land cover and land use in the classification process by using contextual features describing the complex dependencies of all nodes in a higher order clique. These features are incorporated in a discriminative classifier, which approximates the higher order potentials during the inference procedure. The approach is designed for input data based on aerial images. Experiments are carried out on two test sites to evaluate the performance of the proposed method. The experiments show that the classification results are improved compared to the results of a non-contextual classifier. For land cover classification, the result is much more homogeneous and the delineation of land cover segments is improved. For the land use classification, an improvement is mainly achieved for land use objects showing non-typical characteristics or similarities to other land use classes. Furthermore, we have shown that the size of the super-pixels has an influence on the level of detail of the classification result, but also on the degree of smoothing induced by the segmentation method, which is especially beneficial for land cover classes covering large, homogeneous areas.
KW - Aerial imagery
KW - Conditional random fields
KW - Contextual classification
KW - Higher order potential
KW - Land cover
KW - Land use
UR - http://www.scopus.com/inward/record.url?scp=85020024668&partnerID=8YFLogxK
U2 - 10.1016/j.isprsjprs.2017.04.006
DO - 10.1016/j.isprsjprs.2017.04.006
M3 - Article
AN - SCOPUS:85020024668
VL - 130
SP - 63
EP - 80
JO - ISPRS Journal of Photogrammetry and Remote Sensing
JF - ISPRS Journal of Photogrammetry and Remote Sensing
SN - 0924-2716
ER -