Details
Original language | English |
---|---|
Pages (from-to) | 29-43 |
Number of pages | 15 |
Journal | ISPRS Journal of Photogrammetry and Remote Sensing |
Volume | 79 |
Publication status | Published - 7 Mar 2013 |
Abstract
This paper presents a generative statistical approach to automatic 3D building roof reconstruction from airborne laser scanning point clouds. In previous works, bottom-up methods, e.g., points clustering, plane detection, and contour extraction, are widely used. Due to the data artefacts caused by tree clutter, reflection from windows, water features, etc., the bottom-up reconstruction in urban areas may suffer from a number of incomplete or irregular roof parts. Manually given geometric constraints are usually needed to ensure plausible results. In this work we propose an automatic process with emphasis on top-down approaches. The input point cloud is firstly pre-segmented into subzones containing a limited number of buildings to reduce the computational complexity for large urban scenes. For the building extraction and reconstruction in the subzones we propose a pure top-down statistical scheme, in which the bottom-up efforts or additional data like building footprints are no more required. Based on a predefined primitive library we conduct a generative modeling to reconstruct roof models that fit the data. Primitives are assembled into an entire roof with given rules of combination and merging. Overlaps of primitives are allowed in the assembly. The selection of roof primitives, as well as the sampling of their parameters, is driven by a variant of Markov Chain Monte Carlo technique with specified jump mechanism. Experiments are performed on data-sets of different building types (from simple houses, high-rise buildings to combined building groups) and resolutions. The results show robustness despite the data artefacts mentioned above and plausibility in reconstruction.
Keywords
- Building, Extraction, LIDAR, Point cloud, Reconstruction, Three-dimensional, Urban
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Atomic and Molecular Physics, and Optics
- Engineering(all)
- Engineering (miscellaneous)
- Computer Science(all)
- Computer Science Applications
- Earth and Planetary Sciences(all)
- Computers in Earth Sciences
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 79, 07.03.2013, p. 29-43.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - A generative statistical approach to automatic 3D building roof reconstruction from laser scanning data
AU - Huang, Hai
AU - Brenner, Claus
AU - Sester, Monika
N1 - Funding information: We thank the anonymous reviewers for their helpful comments. The research described in this paper was funded by the Deutsche Forschungsgemeinschaft (DFG) under grant BR2970/2-1. The Oldenburg data used in the experiment were kindly provided by the Landesvermessung und Geobasisinformation Niedersachsen (LGLN).
PY - 2013/3/7
Y1 - 2013/3/7
N2 - This paper presents a generative statistical approach to automatic 3D building roof reconstruction from airborne laser scanning point clouds. In previous works, bottom-up methods, e.g., points clustering, plane detection, and contour extraction, are widely used. Due to the data artefacts caused by tree clutter, reflection from windows, water features, etc., the bottom-up reconstruction in urban areas may suffer from a number of incomplete or irregular roof parts. Manually given geometric constraints are usually needed to ensure plausible results. In this work we propose an automatic process with emphasis on top-down approaches. The input point cloud is firstly pre-segmented into subzones containing a limited number of buildings to reduce the computational complexity for large urban scenes. For the building extraction and reconstruction in the subzones we propose a pure top-down statistical scheme, in which the bottom-up efforts or additional data like building footprints are no more required. Based on a predefined primitive library we conduct a generative modeling to reconstruct roof models that fit the data. Primitives are assembled into an entire roof with given rules of combination and merging. Overlaps of primitives are allowed in the assembly. The selection of roof primitives, as well as the sampling of their parameters, is driven by a variant of Markov Chain Monte Carlo technique with specified jump mechanism. Experiments are performed on data-sets of different building types (from simple houses, high-rise buildings to combined building groups) and resolutions. The results show robustness despite the data artefacts mentioned above and plausibility in reconstruction.
AB - This paper presents a generative statistical approach to automatic 3D building roof reconstruction from airborne laser scanning point clouds. In previous works, bottom-up methods, e.g., points clustering, plane detection, and contour extraction, are widely used. Due to the data artefacts caused by tree clutter, reflection from windows, water features, etc., the bottom-up reconstruction in urban areas may suffer from a number of incomplete or irregular roof parts. Manually given geometric constraints are usually needed to ensure plausible results. In this work we propose an automatic process with emphasis on top-down approaches. The input point cloud is firstly pre-segmented into subzones containing a limited number of buildings to reduce the computational complexity for large urban scenes. For the building extraction and reconstruction in the subzones we propose a pure top-down statistical scheme, in which the bottom-up efforts or additional data like building footprints are no more required. Based on a predefined primitive library we conduct a generative modeling to reconstruct roof models that fit the data. Primitives are assembled into an entire roof with given rules of combination and merging. Overlaps of primitives are allowed in the assembly. The selection of roof primitives, as well as the sampling of their parameters, is driven by a variant of Markov Chain Monte Carlo technique with specified jump mechanism. Experiments are performed on data-sets of different building types (from simple houses, high-rise buildings to combined building groups) and resolutions. The results show robustness despite the data artefacts mentioned above and plausibility in reconstruction.
KW - Building
KW - Extraction
KW - LIDAR
KW - Point cloud
KW - Reconstruction
KW - Three-dimensional
KW - Urban
UR - http://www.scopus.com/inward/record.url?scp=84874782123&partnerID=8YFLogxK
U2 - 10.1016/j.isprsjprs.2013.02.004
DO - 10.1016/j.isprsjprs.2013.02.004
M3 - Article
AN - SCOPUS:84874782123
VL - 79
SP - 29
EP - 43
JO - ISPRS Journal of Photogrammetry and Remote Sensing
JF - ISPRS Journal of Photogrammetry and Remote Sensing
SN - 0924-2716
ER -