A clock network for geodesy and fundamental science

Research output: Contribution to journalArticleResearchpeer review

Authors

  • C. Lisdat
  • G. Grosche
  • N. Quintin
  • C. Shi
  • S. M.F. Raupach
  • C. Grebing
  • D. Nicolodi
  • F. Stefani
  • A. Al-Masoudi
  • S. Dörscher
  • S. Häfner
  • J. L. Robyr
  • N. Chiodo
  • S. Bilicki
  • E. Bookjans
  • A. Koczwara
  • S. Koke
  • A. Kuhl
  • F. Wiotte
  • F. Meynadier
  • E. Camisard
  • M. Abgrall
  • M. Lours
  • T. Legero
  • H. Schnatz
  • U. Sterr
  • H. Denker
  • C. Chardonnet
  • Y. Le Coq
  • G. Santarelli
  • A. Amy-Klein
  • R. Le Targat
  • J. Lodewyck
  • O. Lopez
  • P. E. Pottie

Research Organisations

External Research Organisations

  • Physikalisch-Technische Bundesanstalt PTB
  • Universite Paris 13
  • Observatoire de Paris (OBSPARIS)
  • Universite de Bordeaux
  • Réseau National de télécommunications pour la Technologie l’Enseignement et la Recherche (RENATER)
View graph of relations

Details

Original languageEnglish
Article number12443
JournalNature Communications
Volume7
Publication statusPublished - 9 Aug 2016

Abstract

Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10 '17 via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10 '17 is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.

ASJC Scopus subject areas

Cite this

A clock network for geodesy and fundamental science. / Lisdat, C.; Grosche, G.; Quintin, N. et al.
In: Nature Communications, Vol. 7, 12443, 09.08.2016.

Research output: Contribution to journalArticleResearchpeer review

Lisdat, C, Grosche, G, Quintin, N, Shi, C, Raupach, SMF, Grebing, C, Nicolodi, D, Stefani, F, Al-Masoudi, A, Dörscher, S, Häfner, S, Robyr, JL, Chiodo, N, Bilicki, S, Bookjans, E, Koczwara, A, Koke, S, Kuhl, A, Wiotte, F, Meynadier, F, Camisard, E, Abgrall, M, Lours, M, Legero, T, Schnatz, H, Sterr, U, Denker, H, Chardonnet, C, Le Coq, Y, Santarelli, G, Amy-Klein, A, Le Targat, R, Lodewyck, J, Lopez, O & Pottie, PE 2016, 'A clock network for geodesy and fundamental science', Nature Communications, vol. 7, 12443. https://doi.org/10.1038/ncomms12443
Lisdat, C., Grosche, G., Quintin, N., Shi, C., Raupach, S. M. F., Grebing, C., Nicolodi, D., Stefani, F., Al-Masoudi, A., Dörscher, S., Häfner, S., Robyr, J. L., Chiodo, N., Bilicki, S., Bookjans, E., Koczwara, A., Koke, S., Kuhl, A., Wiotte, F., ... Pottie, P. E. (2016). A clock network for geodesy and fundamental science. Nature Communications, 7, Article 12443. https://doi.org/10.1038/ncomms12443
Lisdat C, Grosche G, Quintin N, Shi C, Raupach SMF, Grebing C et al. A clock network for geodesy and fundamental science. Nature Communications. 2016 Aug 9;7:12443. doi: 10.1038/ncomms12443
Lisdat, C. ; Grosche, G. ; Quintin, N. et al. / A clock network for geodesy and fundamental science. In: Nature Communications. 2016 ; Vol. 7.
Download
@article{726577e7b7874505bb9f853d72a9c965,
title = "A clock network for geodesy and fundamental science",
abstract = "Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10 '17 via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10 '17 is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.",
author = "C. Lisdat and G. Grosche and N. Quintin and C. Shi and Raupach, {S. M.F.} and C. Grebing and D. Nicolodi and F. Stefani and A. Al-Masoudi and S. D{\"o}rscher and S. H{\"a}fner and Robyr, {J. L.} and N. Chiodo and S. Bilicki and E. Bookjans and A. Koczwara and S. Koke and A. Kuhl and F. Wiotte and F. Meynadier and E. Camisard and M. Abgrall and M. Lours and T. Legero and H. Schnatz and U. Sterr and H. Denker and C. Chardonnet and {Le Coq}, Y. and G. Santarelli and A. Amy-Klein and {Le Targat}, R. and J. Lodewyck and O. Lopez and Pottie, {P. E.}",
note = "Funding Information: We would like to thank T. Bono and L. Gyde for their support and for facilitating the access to the RENATER network and facilities, P. Gris and B. Moya for helping us to establish the cross-border link between Kehl and Strasbourg and for hosting the experiment at the IT centre of Uni. Strasbourg, as well as O. Bier from ARTE for support at Kehl and C. Grimm from Deutsches Forschungsnetz (DFN) and W.-Ch. Konig (Gasline GmbH) for support at the German link. We thank L. Timmen and C. Voigt from the Institut fur Erdmessung, Leibniz Universitat Hannover and P. Delva from SYRTE for supporting the geo-potential determination. We acknowledge funding support from the Agence Nationale de la Recherche (ANR blanc LIOM 2011-BS04-009-01, Labex First-TF ANR-10-LABX-48-01, Equipex REFIMEVE ANR-11-EQPX-0039), the European Metrology Research Programme (contract SIB-02 NEAT-FT and SIB-55 ITOC), Centre National dE tudes Spatiales (CNES), Conseil Regional Ile-de-France (DIM NanoK), CNRS with Action Specifique Gravitation, References, Astronomie, Metrologie (GRAM) and the German Copyright: Copyright 2016 Elsevier B.V., All rights reserved.",
year = "2016",
month = aug,
day = "9",
doi = "10.1038/ncomms12443",
language = "English",
volume = "7",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",

}

Download

TY - JOUR

T1 - A clock network for geodesy and fundamental science

AU - Lisdat, C.

AU - Grosche, G.

AU - Quintin, N.

AU - Shi, C.

AU - Raupach, S. M.F.

AU - Grebing, C.

AU - Nicolodi, D.

AU - Stefani, F.

AU - Al-Masoudi, A.

AU - Dörscher, S.

AU - Häfner, S.

AU - Robyr, J. L.

AU - Chiodo, N.

AU - Bilicki, S.

AU - Bookjans, E.

AU - Koczwara, A.

AU - Koke, S.

AU - Kuhl, A.

AU - Wiotte, F.

AU - Meynadier, F.

AU - Camisard, E.

AU - Abgrall, M.

AU - Lours, M.

AU - Legero, T.

AU - Schnatz, H.

AU - Sterr, U.

AU - Denker, H.

AU - Chardonnet, C.

AU - Le Coq, Y.

AU - Santarelli, G.

AU - Amy-Klein, A.

AU - Le Targat, R.

AU - Lodewyck, J.

AU - Lopez, O.

AU - Pottie, P. E.

N1 - Funding Information: We would like to thank T. Bono and L. Gyde for their support and for facilitating the access to the RENATER network and facilities, P. Gris and B. Moya for helping us to establish the cross-border link between Kehl and Strasbourg and for hosting the experiment at the IT centre of Uni. Strasbourg, as well as O. Bier from ARTE for support at Kehl and C. Grimm from Deutsches Forschungsnetz (DFN) and W.-Ch. Konig (Gasline GmbH) for support at the German link. We thank L. Timmen and C. Voigt from the Institut fur Erdmessung, Leibniz Universitat Hannover and P. Delva from SYRTE for supporting the geo-potential determination. We acknowledge funding support from the Agence Nationale de la Recherche (ANR blanc LIOM 2011-BS04-009-01, Labex First-TF ANR-10-LABX-48-01, Equipex REFIMEVE ANR-11-EQPX-0039), the European Metrology Research Programme (contract SIB-02 NEAT-FT and SIB-55 ITOC), Centre National dE tudes Spatiales (CNES), Conseil Regional Ile-de-France (DIM NanoK), CNRS with Action Specifique Gravitation, References, Astronomie, Metrologie (GRAM) and the German Copyright: Copyright 2016 Elsevier B.V., All rights reserved.

PY - 2016/8/9

Y1 - 2016/8/9

N2 - Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10 '17 via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10 '17 is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.

AB - Leveraging the unrivalled performance of optical clocks as key tools for geo-science, for astronomy and for fundamental physics beyond the standard model requires comparing the frequency of distant optical clocks faithfully. Here, we report on the comparison and agreement of two strontium optical clocks at an uncertainty of 5 × 10 '17 via a newly established phase-coherent frequency link connecting Paris and Braunschweig using 1,415 km of telecom fibre. The remote comparison is limited only by the instability and uncertainty of the strontium lattice clocks themselves, with negligible contributions from the optical frequency transfer. A fractional precision of 3 × 10 '17 is reached after only 1,000 s averaging time, which is already 10 times better and more than four orders of magnitude faster than any previous long-distance clock comparison. The capability of performing high resolution international clock comparisons paves the way for a redefinition of the unit of time and an all-optical dissemination of the SI-second.

UR - http://www.scopus.com/inward/record.url?scp=84982136499&partnerID=8YFLogxK

U2 - 10.1038/ncomms12443

DO - 10.1038/ncomms12443

M3 - Article

AN - SCOPUS:84982136499

VL - 7

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

M1 - 12443

ER -