Details
Original language | English |
---|---|
Pages (from-to) | 51-61 |
Number of pages | 11 |
Journal | Plant physiology |
Volume | 175 |
Issue number | 1 |
Publication status | Published - Sept 2017 |
Abstract
In plants, amino acid catabolism is especially relevant in metabolic stress situations (e.g. limited carbohydrate availability during extended darkness). Under these conditions, amino acids are used as alternative substrates for respiration. Complete oxidation of the branched-chain amino acids (BCAAs) leucine, isoleucine (Ile), and valine (Val) in the mitochondria efficiently allows the formation of ATP by oxidative phosphorylation. However, the metabolic pathways for BCAA breakdown are largely unknown so far in plants. A systematic search for Arabidopsis (Arabidopsis thaliana) genes encoding proteins resembling enzymes involved in BCAA catabolism in animals, fungi, and bacteria as well as proteomic analyses of mitochondrial fractions from Arabidopsis allowed the identification of a putative 3-hydroxyisobutyrate dehydrogenase, AtHDH1 (At4g20930), involved in Val degradation. Systematic substrate screening analyses revealed that the protein uses 3-hydroxyisobutyrate but additionally 3-hydroxypropionate as substrates. This points to a role of the enzyme not only in Val but possibly also in Ile metabolism. At4g20930 knockdown plants were characterized to test this conclusion. Root toxicity assays revealed increased root growth inhibition of the mutants if cultivated in the presence of Val or Ile but not in the presence of leucine. We conclude that AtHDH1 has a dual role in BCAA metabolism in plants.
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Physiology
- Biochemistry, Genetics and Molecular Biology(all)
- Genetics
- Agricultural and Biological Sciences(all)
- Plant Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Plant physiology, Vol. 175, No. 1, 09.2017, p. 51-61.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - 3-Hydroxyisobutyrate Dehydrogenase Is Involved in Both, Valine and Isoleucine Degradation in Arabidopsis thaliana
AU - Schertl, Peter
AU - Danne, Lennart
AU - Braun, Hans Peter
N1 - Funding information: 1This research was funded by the Leibniz University Hannover Wege in die Forschung II program to P.S. and by a research grant of the Fonds der Chemischen Industrie im Verband der Chemischen Industrie e.V. to P.S. 2 Address correspondence to braun@genetik.uni-hannover.de.
PY - 2017/9
Y1 - 2017/9
N2 - In plants, amino acid catabolism is especially relevant in metabolic stress situations (e.g. limited carbohydrate availability during extended darkness). Under these conditions, amino acids are used as alternative substrates for respiration. Complete oxidation of the branched-chain amino acids (BCAAs) leucine, isoleucine (Ile), and valine (Val) in the mitochondria efficiently allows the formation of ATP by oxidative phosphorylation. However, the metabolic pathways for BCAA breakdown are largely unknown so far in plants. A systematic search for Arabidopsis (Arabidopsis thaliana) genes encoding proteins resembling enzymes involved in BCAA catabolism in animals, fungi, and bacteria as well as proteomic analyses of mitochondrial fractions from Arabidopsis allowed the identification of a putative 3-hydroxyisobutyrate dehydrogenase, AtHDH1 (At4g20930), involved in Val degradation. Systematic substrate screening analyses revealed that the protein uses 3-hydroxyisobutyrate but additionally 3-hydroxypropionate as substrates. This points to a role of the enzyme not only in Val but possibly also in Ile metabolism. At4g20930 knockdown plants were characterized to test this conclusion. Root toxicity assays revealed increased root growth inhibition of the mutants if cultivated in the presence of Val or Ile but not in the presence of leucine. We conclude that AtHDH1 has a dual role in BCAA metabolism in plants.
AB - In plants, amino acid catabolism is especially relevant in metabolic stress situations (e.g. limited carbohydrate availability during extended darkness). Under these conditions, amino acids are used as alternative substrates for respiration. Complete oxidation of the branched-chain amino acids (BCAAs) leucine, isoleucine (Ile), and valine (Val) in the mitochondria efficiently allows the formation of ATP by oxidative phosphorylation. However, the metabolic pathways for BCAA breakdown are largely unknown so far in plants. A systematic search for Arabidopsis (Arabidopsis thaliana) genes encoding proteins resembling enzymes involved in BCAA catabolism in animals, fungi, and bacteria as well as proteomic analyses of mitochondrial fractions from Arabidopsis allowed the identification of a putative 3-hydroxyisobutyrate dehydrogenase, AtHDH1 (At4g20930), involved in Val degradation. Systematic substrate screening analyses revealed that the protein uses 3-hydroxyisobutyrate but additionally 3-hydroxypropionate as substrates. This points to a role of the enzyme not only in Val but possibly also in Ile metabolism. At4g20930 knockdown plants were characterized to test this conclusion. Root toxicity assays revealed increased root growth inhibition of the mutants if cultivated in the presence of Val or Ile but not in the presence of leucine. We conclude that AtHDH1 has a dual role in BCAA metabolism in plants.
UR - http://www.scopus.com/inward/record.url?scp=85029214106&partnerID=8YFLogxK
U2 - 10.1104/pp.17.00649
DO - 10.1104/pp.17.00649
M3 - Article
C2 - 28705827
AN - SCOPUS:85029214106
VL - 175
SP - 51
EP - 61
JO - Plant physiology
JF - Plant physiology
SN - 0032-0889
IS - 1
ER -