Details
Original language | English |
---|---|
Pages (from-to) | 803-810 |
Number of pages | 8 |
Journal | Engineering in life sciences |
Volume | 22 |
Issue number | 12 |
Early online date | 8 Dec 2022 |
Publication status | Published - Dec 2022 |
Abstract
The Australian tobacco plant Nicotiana benthamiana is becoming increasingly popular as a platform for protein production and metabolic engineering. In this system, gene expression is achieved transiently by infiltrating N. benthamiana plants with suspensions of Agrobacterium tumefaciens carrying vectors with the target genes. To infiltrate larger numbers of plants, vacuum infiltration is the most efficient approach known, which is already used on industrial scale. Current laboratory-scale solutions for vacuum infiltration, however, either require expensive custom-tailored equipment or produce large amounts of biologically contaminated waste. To overcome these problems and lower the burden to establish vacuum infiltration in new laboratories, we present here 3D-printed plant holders for vacuum infiltration. We demonstrate that our plant holders are simple to use and enable a throughput of around 40 plants per hour. In addition, our 3D-printed plant holders are made from autoclavable material, which tolerate at least 12 autoclave cycles, helping to limit the production of contaminated waste and thus contributing to increased sustainability in research. In conclusion, our plant holders provide a simple, robust, safe and transparent platform for laboratory-scale vacuum infiltration that can be readily adopted by new laboratories interested in protein and metabolite production in Nicotiana benthamiana. Practical application. Transient expression in Nicotiana benthamiana provides a popular and rapid system for producing proteins in a plant host. To infiltrate larger numbers of plants (typically >20), vacuum infiltration is the method of choice. However, no system has been described so far which is robust to use and can be used without expensive and complex equipment. Our autoclavable 3D-printed plant holders presented here will greatly reduce the efforts required to adopt the vacuum infiltration technique in new laboratories. They are easy to use and can be autoclaved at least 12 times, which contributes to waste reduction and sustainability in research laboratories. We anticipate that the 3D printing design provided here will drastically lower the bar for new groups to employ vacuum infiltration for producing proteins and metabolites in Nicotiana benthamiana.
Keywords
- additive manufacturing, agroinfiltration, autoclavable 3D printing material, Nicotiana benthamiana, vacuum infiltration
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Biotechnology
- Environmental Science(all)
- Environmental Engineering
- Chemical Engineering(all)
- Bioengineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Engineering in life sciences, Vol. 22, No. 12, 12.2022, p. 803-810.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - 3D-printed autoclavable plant holders to facilitate large-scale protein production in plants
AU - Chuang, Ling
AU - Enders, Anton
AU - Offermann, Sascha
AU - Bahnemann, Janina
AU - Franke, Jakob
N1 - Funding Information: The authors thank Yvonne Leye and Miriam Fent for excellent horticultural support, and Katja Körner for autoclave support and for media preparation. We thank members of the Franke group for helping to compare infiltration systems. L.C. and J.F. gratefully acknowledge financial support by the Emmy Noether programme of the Deutsche Forschungsgemeinschaft (FR 3720/3‐1) and the SMART BIOTECS alliance between the Technische Universität Braunschweig and the Leibniz Universität Hannover, supported by the Ministry of Science and Culture (MWK) of Lower Saxony. A. E. and J. B. like to thank the Deutsche Forschungsgemeinschaft for their financial support by the Emmy Noether programme (grant no. 346772917).
PY - 2022/12
Y1 - 2022/12
N2 - The Australian tobacco plant Nicotiana benthamiana is becoming increasingly popular as a platform for protein production and metabolic engineering. In this system, gene expression is achieved transiently by infiltrating N. benthamiana plants with suspensions of Agrobacterium tumefaciens carrying vectors with the target genes. To infiltrate larger numbers of plants, vacuum infiltration is the most efficient approach known, which is already used on industrial scale. Current laboratory-scale solutions for vacuum infiltration, however, either require expensive custom-tailored equipment or produce large amounts of biologically contaminated waste. To overcome these problems and lower the burden to establish vacuum infiltration in new laboratories, we present here 3D-printed plant holders for vacuum infiltration. We demonstrate that our plant holders are simple to use and enable a throughput of around 40 plants per hour. In addition, our 3D-printed plant holders are made from autoclavable material, which tolerate at least 12 autoclave cycles, helping to limit the production of contaminated waste and thus contributing to increased sustainability in research. In conclusion, our plant holders provide a simple, robust, safe and transparent platform for laboratory-scale vacuum infiltration that can be readily adopted by new laboratories interested in protein and metabolite production in Nicotiana benthamiana. Practical application. Transient expression in Nicotiana benthamiana provides a popular and rapid system for producing proteins in a plant host. To infiltrate larger numbers of plants (typically >20), vacuum infiltration is the method of choice. However, no system has been described so far which is robust to use and can be used without expensive and complex equipment. Our autoclavable 3D-printed plant holders presented here will greatly reduce the efforts required to adopt the vacuum infiltration technique in new laboratories. They are easy to use and can be autoclaved at least 12 times, which contributes to waste reduction and sustainability in research laboratories. We anticipate that the 3D printing design provided here will drastically lower the bar for new groups to employ vacuum infiltration for producing proteins and metabolites in Nicotiana benthamiana.
AB - The Australian tobacco plant Nicotiana benthamiana is becoming increasingly popular as a platform for protein production and metabolic engineering. In this system, gene expression is achieved transiently by infiltrating N. benthamiana plants with suspensions of Agrobacterium tumefaciens carrying vectors with the target genes. To infiltrate larger numbers of plants, vacuum infiltration is the most efficient approach known, which is already used on industrial scale. Current laboratory-scale solutions for vacuum infiltration, however, either require expensive custom-tailored equipment or produce large amounts of biologically contaminated waste. To overcome these problems and lower the burden to establish vacuum infiltration in new laboratories, we present here 3D-printed plant holders for vacuum infiltration. We demonstrate that our plant holders are simple to use and enable a throughput of around 40 plants per hour. In addition, our 3D-printed plant holders are made from autoclavable material, which tolerate at least 12 autoclave cycles, helping to limit the production of contaminated waste and thus contributing to increased sustainability in research. In conclusion, our plant holders provide a simple, robust, safe and transparent platform for laboratory-scale vacuum infiltration that can be readily adopted by new laboratories interested in protein and metabolite production in Nicotiana benthamiana. Practical application. Transient expression in Nicotiana benthamiana provides a popular and rapid system for producing proteins in a plant host. To infiltrate larger numbers of plants (typically >20), vacuum infiltration is the method of choice. However, no system has been described so far which is robust to use and can be used without expensive and complex equipment. Our autoclavable 3D-printed plant holders presented here will greatly reduce the efforts required to adopt the vacuum infiltration technique in new laboratories. They are easy to use and can be autoclaved at least 12 times, which contributes to waste reduction and sustainability in research laboratories. We anticipate that the 3D printing design provided here will drastically lower the bar for new groups to employ vacuum infiltration for producing proteins and metabolites in Nicotiana benthamiana.
KW - additive manufacturing
KW - agroinfiltration
KW - autoclavable 3D printing material
KW - Nicotiana benthamiana
KW - vacuum infiltration
UR - http://www.scopus.com/inward/record.url?scp=85135965261&partnerID=8YFLogxK
U2 - 10.1002/elsc.202200001
DO - 10.1002/elsc.202200001
M3 - Article
AN - SCOPUS:85135965261
VL - 22
SP - 803
EP - 810
JO - Engineering in life sciences
JF - Engineering in life sciences
SN - 1618-0240
IS - 12
ER -