Details
Original language | English |
---|---|
Pages (from-to) | 299-304 |
Number of pages | 6 |
Journal | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives |
Volume | 39 |
Publication status | Published - 1 Aug 2012 |
Event | 22nd Congress of the International Society for Photogrammetry and Remote Sensing, ISPRS 2012 - Melbourne, Australia Duration: 25 Aug 2012 → 1 Sept 2012 |
Abstract
In this paper, a workflow is proposed to detect 3D building changes in urban and sub-urban areas using high-resolution stereoscopic satellite images of different epochs and a GIS database. Semi-global matching (SGM) is used to derive Digital Surface Models (DSM) and subsequently normalised digital surface models (nDSM, the difference of a DSM and a digital elevation model (DEM)), from the stereo pairs at each epoch. Large differences between the two DSMs are assumed to represent height changes. In order to reduce the effect of matching errors, heights in the nDSM of at least one epoch must also lie above a certain threshold in order to be considered as candidates for building change. A GIS database is used to check the existence of buildings at epoch 1. As a result of geometric discrepancies during data acquisition caused by different view directions and illumination conditions, the outlines of existing buildings do not necessarily match even in non-changed areas. Consequently, in the change map, there are streaking-shaped structures along the building outlines which do not correspond to actual changes. To eliminate these effects morphologic filtering is applied. The mask we use operates as a threshold on the shape and size of detected new blobs and effectively removes small objects such as cars, small trees and salt and pepper noise. The results of the proposed algorithm using IKONOS and GeoEye images demonstrate its performance for detecting 3D building changes and to extract building boundaries.
Keywords
- Building, Change Detection, HR Satellite Images, Multitemporal, Three-dimensional, Urban Region
ASJC Scopus subject areas
- Computer Science(all)
- Information Systems
- Social Sciences(all)
- Geography, Planning and Development
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. 39, 01.08.2012, p. 299-304.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - 3D building change detection using high resolution stereo images and a GIS database
AU - Dini, G. R.
AU - Jacobsen, K.
AU - Rottensteiner, F.
AU - Al Rajhi, M.
AU - Heipke, C.
PY - 2012/8/1
Y1 - 2012/8/1
N2 - In this paper, a workflow is proposed to detect 3D building changes in urban and sub-urban areas using high-resolution stereoscopic satellite images of different epochs and a GIS database. Semi-global matching (SGM) is used to derive Digital Surface Models (DSM) and subsequently normalised digital surface models (nDSM, the difference of a DSM and a digital elevation model (DEM)), from the stereo pairs at each epoch. Large differences between the two DSMs are assumed to represent height changes. In order to reduce the effect of matching errors, heights in the nDSM of at least one epoch must also lie above a certain threshold in order to be considered as candidates for building change. A GIS database is used to check the existence of buildings at epoch 1. As a result of geometric discrepancies during data acquisition caused by different view directions and illumination conditions, the outlines of existing buildings do not necessarily match even in non-changed areas. Consequently, in the change map, there are streaking-shaped structures along the building outlines which do not correspond to actual changes. To eliminate these effects morphologic filtering is applied. The mask we use operates as a threshold on the shape and size of detected new blobs and effectively removes small objects such as cars, small trees and salt and pepper noise. The results of the proposed algorithm using IKONOS and GeoEye images demonstrate its performance for detecting 3D building changes and to extract building boundaries.
AB - In this paper, a workflow is proposed to detect 3D building changes in urban and sub-urban areas using high-resolution stereoscopic satellite images of different epochs and a GIS database. Semi-global matching (SGM) is used to derive Digital Surface Models (DSM) and subsequently normalised digital surface models (nDSM, the difference of a DSM and a digital elevation model (DEM)), from the stereo pairs at each epoch. Large differences between the two DSMs are assumed to represent height changes. In order to reduce the effect of matching errors, heights in the nDSM of at least one epoch must also lie above a certain threshold in order to be considered as candidates for building change. A GIS database is used to check the existence of buildings at epoch 1. As a result of geometric discrepancies during data acquisition caused by different view directions and illumination conditions, the outlines of existing buildings do not necessarily match even in non-changed areas. Consequently, in the change map, there are streaking-shaped structures along the building outlines which do not correspond to actual changes. To eliminate these effects morphologic filtering is applied. The mask we use operates as a threshold on the shape and size of detected new blobs and effectively removes small objects such as cars, small trees and salt and pepper noise. The results of the proposed algorithm using IKONOS and GeoEye images demonstrate its performance for detecting 3D building changes and to extract building boundaries.
KW - Building
KW - Change Detection
KW - HR Satellite Images
KW - Multitemporal
KW - Three-dimensional
KW - Urban Region
UR - http://www.scopus.com/inward/record.url?scp=84924251797&partnerID=8YFLogxK
U2 - 10.5194/isprsarchives-XXXIX-B7-299-2012
DO - 10.5194/isprsarchives-XXXIX-B7-299-2012
M3 - Conference article
AN - SCOPUS:84924251797
VL - 39
SP - 299
EP - 304
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
SN - 1682-1750
T2 - 22nd Congress of the International Society for Photogrammetry and Remote Sensing, ISPRS 2012
Y2 - 25 August 2012 through 1 September 2012
ER -