Organisation placeholder image, no image found

Institute of Artificial Intelligence

Organisational unit: Institute

Type of address: Visitor address.
Appelstraße 9a
30167
Hannover
View graph of relations

Publications

  1. 2024
  2. E-pub ahead of print

    Bayesian Optimisation for Protein Sequence Design: Gaussian Processes with Zero-Shot Protein Language Model Prior Mean

    Benjamins, C., Surana, S., Bent, O., Lindauer, M. & Duckworth, P., Dec 2024, (E-pub ahead of print) NeurIPS Workshop on Time Series in the Age of Large Models.

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  3. E-pub ahead of print

    Bayesian Optimization for Protein Sequence Design: Back to Simplicity with Gaussian Processes

    Benjamins, C., Surana, S., Bent, O., Lindauer, M. & Duckworth, P., Dec 2024, (E-pub ahead of print) AI for Accelerated Materials Design - NeurIPS Workshop 2024.

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  4. E-pub ahead of print

    Automl for Multi-Class Anomaly Compensation of Sensor Drift

    Schaller, M. C., Kruse, M., Ortega, A., Lindauer, M. & Rosenhahn, B., Nov 2024, (E-pub ahead of print).

    Research output: Working paper/PreprintPreprint

  5. Accepted/In press

    How Green is AutoML for Tabular Data?

    Neutatz, F., Lindauer, M. & Abedjan, Z., Jan 2025, Proceedings of EDBT 2025.

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  6. Accepted/In press

    Towards Enhancing Predictive Representations using Relational Structure in Reinforcement Learning

    Mohan, A. & Lindauer, M., 30 Sept 2024, (Accepted/In press) The 17th European Workshop on Reinforcement Learning (EWRL 2024).

    Research output: Chapter in book/report/conference proceedingConference abstractResearchpeer review

  7. Published

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    LIGO Scientific, Virgo, and KAGRA Collaborations, L. S. V. A. K. C., Brinkmann, M., Carlassara, M., Chakraborty, P., Danzmann, K., Heurs, M., Johny, N., Junker, J., Knust, N., Lehmann, J., Lück, H., Matiushechkina, M., Nery, M., Schulte, B. W., Vahlbruch, H., Wilken, D., Willke, B., Wu, D. S., Affeldt, C., Bergamin, F., Bisht, A., Bode, N., Booker, P., Borchers, A., Brockmüller, E., Carter, J., Ghosh, S., Hochheim, S., Kastaun, W., Khan, F., Koch, P., Kringel, V., Kuehn, G., Lough, J., Maciy, R. R., Meylahn, F., Nadji, S., Ohme, F., Pascale, G., Schneewind, M., Schutz, B. F., Venneberg, J., von Wrangel, J., Weinert, M., Wellmann, F. & Weßels, P., 15 Aug 2024, In: Physical Review D. 110, 4, p. 1-21 21 p., 042001.

    Research output: Contribution to journalArticleResearchpeer review

  8. Published

    AMLTK: A Modular AutoML Toolkit in Python

    Bergman, E., Feurer, M., Bahram, A., Rezaei, A., Purucker, L., Segel, S., Lindauer, M. & Eggensperger, K., 14 Aug 2024, In: The Journal of Open Source Software. 9, 100, 4 p., 6367.

    Research output: Contribution to journalArticleResearchpeer review

  9. Published

    Disentangling Dialect from Social Bias via Multitask Learning to Improve Fairness

    Spliethöver, M., Menon, S. N. & Wachsmuth, H., Aug 2024, Findings of the Association for Computational Linguistics ACL 2024. Ku, L.-W., Martins, A. & Srikumar, V. (eds.). p. 9294-9313 20 p. (Proceedings of the Annual Meeting of the Association for Computational Linguistics).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  10. Accepted/In press

    Hyperparameter Importance Analysis for Multi-Objective AutoML

    Theodorakopoulos, D., Stahl, F. & Lindauer, M., 4 Jul 2024, (Accepted/In press) Proceedings of the european conference on AI (ECAI).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  11. Published

    AutoML in Heavily Constrained Applications

    Neutatz, F., Lindauer, M. & Abedjan, Z., Jul 2024, In: VLDB Journal. 33, 4, p. 957–979 23 p.

    Research output: Contribution to journalArticleResearchpeer review

  12. E-pub ahead of print

    Position: Why We Must Rethink Empirical Research in Machine Learning

    Herrmann, M., Lange, F. J. D., Eggensperger, K., Casalicchio, G., Wever, M., Feurer, M., Rügamer, D., Hüllermeier, E., Boulesteix, A. & Bischl, B., Jul 2024, (E-pub ahead of print) Proceedings of the international conference on machine learning.

    Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

  13. E-pub ahead of print

    ALPBench: A Benchmark for Active Learning Pipelines on Tabular Data

    Margraf, V., Wever, M., Gilhuber, S., Tavares, G. M., Seidl, T. & Hüllermeier, E., 15 Jun 2024, (E-pub ahead of print).

    Research output: Working paper/PreprintPreprint

  14. E-pub ahead of print

    Optimizing Time Series Forecasting Architectures: A Hierarchical Neural Architecture Search Approach

    Deng, D. & Lindauer, M., 10 Jun 2024, (E-pub ahead of print) NeurIPS Workshop on Time Series in the Age of Large Models. (ArXiv).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  15. Published

    Analyzing the Use of Metaphors in News Editorials for Political Framing

    Sengupta, M., El Baff, R., Alshomary, M. & Wachsmuth, H., Jun 2024, Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Duh, K., Gomez, H. & Bethard, S. (eds.). Mexico City, Mexico, p. 3621–3631 11 p. (Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024; vol. 1).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  16. Published

    A School Student Essay Corpus for Analyzing Interactions of Argumentative Structure and Quality

    Stahl, M., Michel, N., Kilsbach, S., Schmidtke, J., Rezat, S. & Wachsmuth, H., Jun 2024, Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers). Duh, K., Gomez, H. & Bethard, S. (eds.). p. 2661–2674 14 p. (Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024; vol. 1).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  17. Published

    Exploring LLM Prompting Strategies for Joint Essay Scoring and Feedback Generation

    Stahl, M., Biermann, L., Nehring, A. & Wachsmuth, H., Jun 2024, Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2024). p. 283–298

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  18. Published

    Verfahren zum Trainieren eines Algorithmus des maschinellen Lernens durch ein bestärkendes Lernverfahren

    Eimer, T. (Inventor), Hutter, F. (Inventor), Lindauer, M. (Inventor) & Biedenkapp, A. (Inventor), 4 Apr 2024, IPC No. G06N20/00, Patent No. DE102022210480A1, 4 Oct 2022, Priority date 4 Oct 2022, Priority No. DE202210210480A

    Research output: Patent

  19. E-pub ahead of print

    Towards Leveraging AutoML for Sustainable Deep Learning: A Multi-Objective HPO Approach on Deep Shift Neural Networks

    Hennig, L., Tornede, T. & Lindauer, M., 2 Apr 2024, (E-pub ahead of print) 5th Workshop on practical ML for limited/low resource settings.

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  20. Accepted/In press

    auto-sktime: Automated Time Series Forecasting

    Zöller, M., Lindauer, M. & Huber, M., Apr 2024, (Accepted/In press) Proceedings of the 18TH Learning and Intelligent Optimization Conference (LION).

    Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

  21. E-pub ahead of print

    Structure in Deep Reinforcement Learning: A Survey and Open Problems

    Mohan, A., Zhang, A. & Lindauer, M., Apr 2024, (E-pub ahead of print) In: Journal of Artificial Intelligence Research.

    Research output: Contribution to journalArticleResearchpeer review

Previous 1 2 3 4 5 6 7 Next