Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 6169-6183 |
Seitenumfang | 15 |
Fachzeitschrift | International Mathematics Research Notices |
Jahrgang | 2021 |
Ausgabenummer | 8 |
Frühes Online-Datum | 8 Jan. 2020 |
Publikationsstatus | Veröffentlicht - 15 Dez. 2022 |
Extern publiziert | Ja |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Mathematics Research Notices, Jahrgang 2021, Nr. 8, 15.12.2022, S. 6169-6183.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Zeros of holomorphic one-forms and topology of Kähler manifolds
T2 - (Appendix written jointly with H.-Y. Lin)
AU - Schreieder, Stefan
N1 - Publisher Copyright: © 2021 The Author(s) 2020. Published by Oxford University Press. All rights reserved.
PY - 2022/12/15
Y1 - 2022/12/15
N2 - A conjecture of Kotschick predicts that a compact Kähler manifold \(X\) fibres smoothly over the circle if and only if it admits a holomorphic one-form without zeros. In this paper we develop an approach to this conjecture and verify it in dimension two. In a joint paper with Hao, we use our approach to prove Kotschick's conjecture for smooth projective threefolds.
AB - A conjecture of Kotschick predicts that a compact Kähler manifold \(X\) fibres smoothly over the circle if and only if it admits a holomorphic one-form without zeros. In this paper we develop an approach to this conjecture and verify it in dimension two. In a joint paper with Hao, we use our approach to prove Kotschick's conjecture for smooth projective threefolds.
KW - Topology of algebraic varieties
KW - one-forms
KW - local systems
KW - generic vanishing
UR - http://www.scopus.com/inward/record.url?scp=85143615475&partnerID=8YFLogxK
U2 - 10.1093/imrn/rnz323
DO - 10.1093/imrn/rnz323
M3 - Article
VL - 2021
SP - 6169
EP - 6183
JO - International Mathematics Research Notices
JF - International Mathematics Research Notices
SN - 1073-7928
IS - 8
ER -