Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 10-14 |
Seitenumfang | 5 |
Fachzeitschrift | Journal of Uncertain Systems |
Jahrgang | 10 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - Feb. 2016 |
Extern publiziert | Ja |
Abstract
It is known that in the first approximation, many real-life stationary stochastic processes are well- described by an exponential covariance kernel C(u) = exp(-a|u|). Empirical evidence shows that in many practical situations, a good second approximation is provided by the modified exponential covari- ance kernel C(u) = exp(-a |u|) (1-r|u|). In this paper, we provide a theoretical explanation for this empirical phenomenon.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Maschinelles Sehen und Mustererkennung
- Mathematik (insg.)
- Steuerung und Optimierung
- Informatik (insg.)
- Artificial intelligence
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Uncertain Systems, Jahrgang 10, Nr. 1, 02.2016, S. 10-14.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Why Modified exponential covariance kernel is empirically successful
T2 - A theoretical explanation
AU - Kosheleva, Olga
AU - Beer, Michael
PY - 2016/2
Y1 - 2016/2
N2 - It is known that in the first approximation, many real-life stationary stochastic processes are well- described by an exponential covariance kernel C(u) = exp(-a|u|). Empirical evidence shows that in many practical situations, a good second approximation is provided by the modified exponential covari- ance kernel C(u) = exp(-a |u|) (1-r|u|). In this paper, we provide a theoretical explanation for this empirical phenomenon.
AB - It is known that in the first approximation, many real-life stationary stochastic processes are well- described by an exponential covariance kernel C(u) = exp(-a|u|). Empirical evidence shows that in many practical situations, a good second approximation is provided by the modified exponential covari- ance kernel C(u) = exp(-a |u|) (1-r|u|). In this paper, we provide a theoretical explanation for this empirical phenomenon.
KW - Exponential covariance kernel
KW - Modified exponential covari-ance kernel
KW - Stationary stochastic processes
UR - http://www.scopus.com/inward/record.url?scp=84958979505&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:84958979505
VL - 10
SP - 10
EP - 14
JO - Journal of Uncertain Systems
JF - Journal of Uncertain Systems
SN - 1752-8909
IS - 1
ER -