Details
Originalsprache | Englisch |
---|---|
Titel des Sammelwerks | Studies in Computational Intelligence |
Herausgeber (Verlag) | Springer Verlag |
Seiten | 78-85 |
Seitenumfang | 8 |
ISBN (elektronisch) | 978-3-319-73150-6 |
ISBN (Print) | 978-3-319-73149-0 |
Publikationsstatus | Veröffentlicht - 20 Dez. 2017 |
Publikationsreihe
Name | Studies in Computational Intelligence |
---|---|
Band | 760 |
ISSN (Print) | 1860-949X |
Abstract
It is well know how to estimate the uncertainty of the result y of data processing if we know the correlations between all the inputs. Sometimes, however, we have no information about the correlations. In this case, instead of a single value σ of the standard deviation of the result, we get a range [σ̲,σ¯] of possible values. In this paper, we show how to compute this range.
ASJC Scopus Sachgebiete
- Informatik (insg.)
- Artificial intelligence
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Studies in Computational Intelligence. Springer Verlag, 2017. S. 78-85 (Studies in Computational Intelligence; Band 760).
Publikation: Beitrag in Buch/Bericht/Sammelwerk/Konferenzband › Beitrag in Buch/Sammelwerk › Forschung › Peer-Review
}
TY - CHAP
T1 - What if we do not know correlations?
AU - Neumann, Ingo
AU - Beer, Michael
AU - Gong, Zitong
AU - Sriboonchitta, Songsak
AU - Kreinovich, Vladik
N1 - Funding information: This work was also supported in part by the US National Science Foundation grant HRD-1242122. Acknowledgments. We acknowledge the partial support of the Center of Excellence in Econometrics, Faculty of Economics, Chiang Mai University, Thailand. This work was performed when Vladik was a visiting researcher with the Geodetic Institute of the Leibniz University of Hannover, a visit supported by the German Science Foundation.
PY - 2017/12/20
Y1 - 2017/12/20
N2 - It is well know how to estimate the uncertainty of the result y of data processing if we know the correlations between all the inputs. Sometimes, however, we have no information about the correlations. In this case, instead of a single value σ of the standard deviation of the result, we get a range [σ̲,σ¯] of possible values. In this paper, we show how to compute this range.
AB - It is well know how to estimate the uncertainty of the result y of data processing if we know the correlations between all the inputs. Sometimes, however, we have no information about the correlations. In this case, instead of a single value σ of the standard deviation of the result, we get a range [σ̲,σ¯] of possible values. In this paper, we show how to compute this range.
UR - http://www.scopus.com/inward/record.url?scp=85038842719&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-73150-6_5
DO - 10.1007/978-3-319-73150-6_5
M3 - Contribution to book/anthology
AN - SCOPUS:85038842719
SN - 978-3-319-73149-0
T3 - Studies in Computational Intelligence
SP - 78
EP - 85
BT - Studies in Computational Intelligence
PB - Springer Verlag
ER -