Weyl groupoids of rank two and continued fractions

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • Technische Universität Kaiserslautern
  • Ludwig-Maximilians-Universität München (LMU)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)317-340
Seitenumfang24
FachzeitschriftAlgebra and Number Theory
Jahrgang3
Ausgabenummer3
PublikationsstatusVeröffentlicht - 1 Dez. 2009
Extern publiziertJa

Abstract

We present a relationship between continued fractions and Weyl groupoids of Cartan schemes of rank two. This allows one to decide easily if a given Cartan scheme of rank two admits a finite root system. We obtain obstructions and sharp bounds for the entries of the Cartan matrices. Cartan matrix, continued fraction, Nichols algebra, Weyl groupoid.

ASJC Scopus Sachgebiete

Zitieren

Weyl groupoids of rank two and continued fractions. / Cuntz, Michael; Heckenberger, István.
in: Algebra and Number Theory, Jahrgang 3, Nr. 3, 01.12.2009, S. 317-340.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Cuntz M, Heckenberger I. Weyl groupoids of rank two and continued fractions. Algebra and Number Theory. 2009 Dez 1;3(3):317-340. doi: 10.2140/ant.2009.3.317
Cuntz, Michael ; Heckenberger, István. / Weyl groupoids of rank two and continued fractions. in: Algebra and Number Theory. 2009 ; Jahrgang 3, Nr. 3. S. 317-340.
Download
@article{c6356ccf8be84e28ad6c046dd10fb1fe,
title = "Weyl groupoids of rank two and continued fractions",
abstract = "We present a relationship between continued fractions and Weyl groupoids of Cartan schemes of rank two. This allows one to decide easily if a given Cartan scheme of rank two admits a finite root system. We obtain obstructions and sharp bounds for the entries of the Cartan matrices. Cartan matrix, continued fraction, Nichols algebra, Weyl groupoid.",
author = "Michael Cuntz and Istv{\'a}n Heckenberger",
year = "2009",
month = dec,
day = "1",
doi = "10.2140/ant.2009.3.317",
language = "English",
volume = "3",
pages = "317--340",
journal = "Algebra and Number Theory",
issn = "1937-0652",
publisher = "Mathematical Sciences Publishers",
number = "3",

}

Download

TY - JOUR

T1 - Weyl groupoids of rank two and continued fractions

AU - Cuntz, Michael

AU - Heckenberger, István

PY - 2009/12/1

Y1 - 2009/12/1

N2 - We present a relationship between continued fractions and Weyl groupoids of Cartan schemes of rank two. This allows one to decide easily if a given Cartan scheme of rank two admits a finite root system. We obtain obstructions and sharp bounds for the entries of the Cartan matrices. Cartan matrix, continued fraction, Nichols algebra, Weyl groupoid.

AB - We present a relationship between continued fractions and Weyl groupoids of Cartan schemes of rank two. This allows one to decide easily if a given Cartan scheme of rank two admits a finite root system. We obtain obstructions and sharp bounds for the entries of the Cartan matrices. Cartan matrix, continued fraction, Nichols algebra, Weyl groupoid.

UR - http://www.scopus.com/inward/record.url?scp=77953803194&partnerID=8YFLogxK

U2 - 10.2140/ant.2009.3.317

DO - 10.2140/ant.2009.3.317

M3 - Article

AN - SCOPUS:77953803194

VL - 3

SP - 317

EP - 340

JO - Algebra and Number Theory

JF - Algebra and Number Theory

SN - 1937-0652

IS - 3

ER -

Von denselben Autoren