Well-posedness of the coagulation-fragmentation equation with size diffusion

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autorschaft

  • Philippe Laurencot
  • Christoph Walker

Organisationseinheiten

Externe Organisationen

  • Université de Toulouse
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)211-240
Seitenumfang30
FachzeitschriftDifferential and Integral Equations
Jahrgang35
Ausgabenummer3-4
Frühes Online-Datum7 Feb. 2022
PublikationsstatusVeröffentlicht - März 2022

Abstract

Local and global well-posedness of the coagulation-fragmentation equation with size diffusion are investigated. Owing to the semilinear structure of the equation, a semigroup approach is used, building upon generation results previously derived for the linear fragmentation-diffusion operator in suitable weighted \(L^1\)-spaces.

ASJC Scopus Sachgebiete

Zitieren

Well-posedness of the coagulation-fragmentation equation with size diffusion. / Laurencot, Philippe; Walker, Christoph.
in: Differential and Integral Equations, Jahrgang 35, Nr. 3-4, 03.2022, S. 211-240.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Laurencot P, Walker C. Well-posedness of the coagulation-fragmentation equation with size diffusion. Differential and Integral Equations. 2022 Mär;35(3-4):211-240. Epub 2022 Feb 7. doi: 10.48550/arXiv.2110.09095, 10.57262/die035-0304-211
Laurencot, Philippe ; Walker, Christoph. / Well-posedness of the coagulation-fragmentation equation with size diffusion. in: Differential and Integral Equations. 2022 ; Jahrgang 35, Nr. 3-4. S. 211-240.
Download
@article{817fefc8c651443fb047e96ec419c4fa,
title = "Well-posedness of the coagulation-fragmentation equation with size diffusion",
abstract = " Local and global well-posedness of the coagulation-fragmentation equation with size diffusion are investigated. Owing to the semilinear structure of the equation, a semigroup approach is used, building upon generation results previously derived for the linear fragmentation-diffusion operator in suitable weighted \(L^1\)-spaces. ",
keywords = "math.AP",
author = "Philippe Laurencot and Christoph Walker",
year = "2022",
month = mar,
doi = "10.48550/arXiv.2110.09095",
language = "English",
volume = "35",
pages = "211--240",
journal = "Differential and Integral Equations",
issn = "0893-4983",
publisher = "Khayyam Publishing, Inc.",
number = "3-4",

}

Download

TY - JOUR

T1 - Well-posedness of the coagulation-fragmentation equation with size diffusion

AU - Laurencot, Philippe

AU - Walker, Christoph

PY - 2022/3

Y1 - 2022/3

N2 - Local and global well-posedness of the coagulation-fragmentation equation with size diffusion are investigated. Owing to the semilinear structure of the equation, a semigroup approach is used, building upon generation results previously derived for the linear fragmentation-diffusion operator in suitable weighted \(L^1\)-spaces.

AB - Local and global well-posedness of the coagulation-fragmentation equation with size diffusion are investigated. Owing to the semilinear structure of the equation, a semigroup approach is used, building upon generation results previously derived for the linear fragmentation-diffusion operator in suitable weighted \(L^1\)-spaces.

KW - math.AP

UR - http://www.scopus.com/inward/record.url?scp=85132664156&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2110.09095

DO - 10.48550/arXiv.2110.09095

M3 - Article

VL - 35

SP - 211

EP - 240

JO - Differential and Integral Equations

JF - Differential and Integral Equations

SN - 0893-4983

IS - 3-4

ER -