Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

Externe Organisationen

  • Universität Zürich (UZH)
  • Universität Kassel
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)475-504
Seitenumfang30
FachzeitschriftCommunications on Pure and Applied Mathematics
Jahrgang51
Ausgabenummer5
PublikationsstatusVeröffentlicht - 6 Dez. 1998
Extern publiziertJa

Abstract

We establish the local well-posedness of a recently derived model for small-amplitude, shallow water waves. For a large class of initial data we prove global existence of the corresponding solution. Criteria guaranteeing the development of singularities in finite time for strong solutions with smooth initial data are obtained, and an existence and uniqueness result for a class of global weak solutions is also given.

ASJC Scopus Sachgebiete

Zitieren

Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. / Constantin, Adrian; Escher, Joachim.
in: Communications on Pure and Applied Mathematics, Jahrgang 51, Nr. 5, 06.12.1998, S. 475-504.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Constantin A, Escher J. Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Communications on Pure and Applied Mathematics. 1998 Dez 6;51(5):475-504. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
Download
@article{47c6a486e2064f5eb0cf60647e9edece,
title = "Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation",
abstract = "We establish the local well-posedness of a recently derived model for small-amplitude, shallow water waves. For a large class of initial data we prove global existence of the corresponding solution. Criteria guaranteeing the development of singularities in finite time for strong solutions with smooth initial data are obtained, and an existence and uniqueness result for a class of global weak solutions is also given.",
author = "Adrian Constantin and Joachim Escher",
year = "1998",
month = dec,
day = "6",
doi = "10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5",
language = "English",
volume = "51",
pages = "475--504",
journal = "Communications on Pure and Applied Mathematics",
issn = "0010-3640",
publisher = "Wiley-Liss Inc.",
number = "5",

}

Download

TY - JOUR

T1 - Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation

AU - Constantin, Adrian

AU - Escher, Joachim

PY - 1998/12/6

Y1 - 1998/12/6

N2 - We establish the local well-posedness of a recently derived model for small-amplitude, shallow water waves. For a large class of initial data we prove global existence of the corresponding solution. Criteria guaranteeing the development of singularities in finite time for strong solutions with smooth initial data are obtained, and an existence and uniqueness result for a class of global weak solutions is also given.

AB - We establish the local well-posedness of a recently derived model for small-amplitude, shallow water waves. For a large class of initial data we prove global existence of the corresponding solution. Criteria guaranteeing the development of singularities in finite time for strong solutions with smooth initial data are obtained, and an existence and uniqueness result for a class of global weak solutions is also given.

UR - http://www.scopus.com/inward/record.url?scp=0032374820&partnerID=8YFLogxK

U2 - 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5

DO - 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5

M3 - Article

AN - SCOPUS:0032374820

VL - 51

SP - 475

EP - 504

JO - Communications on Pure and Applied Mathematics

JF - Communications on Pure and Applied Mathematics

SN - 0010-3640

IS - 5

ER -

Von denselben Autoren