Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 475-504 |
Seitenumfang | 30 |
Fachzeitschrift | Communications on Pure and Applied Mathematics |
Jahrgang | 51 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - 6 Dez. 1998 |
Extern publiziert | Ja |
Abstract
We establish the local well-posedness of a recently derived model for small-amplitude, shallow water waves. For a large class of initial data we prove global existence of the corresponding solution. Criteria guaranteeing the development of singularities in finite time for strong solutions with smooth initial data are obtained, and an existence and uniqueness result for a class of global weak solutions is also given.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Communications on Pure and Applied Mathematics, Jahrgang 51, Nr. 5, 06.12.1998, S. 475-504.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation
AU - Constantin, Adrian
AU - Escher, Joachim
PY - 1998/12/6
Y1 - 1998/12/6
N2 - We establish the local well-posedness of a recently derived model for small-amplitude, shallow water waves. For a large class of initial data we prove global existence of the corresponding solution. Criteria guaranteeing the development of singularities in finite time for strong solutions with smooth initial data are obtained, and an existence and uniqueness result for a class of global weak solutions is also given.
AB - We establish the local well-posedness of a recently derived model for small-amplitude, shallow water waves. For a large class of initial data we prove global existence of the corresponding solution. Criteria guaranteeing the development of singularities in finite time for strong solutions with smooth initial data are obtained, and an existence and uniqueness result for a class of global weak solutions is also given.
UR - http://www.scopus.com/inward/record.url?scp=0032374820&partnerID=8YFLogxK
U2 - 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
DO - 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5
M3 - Article
AN - SCOPUS:0032374820
VL - 51
SP - 475
EP - 504
JO - Communications on Pure and Applied Mathematics
JF - Communications on Pure and Applied Mathematics
SN - 0010-3640
IS - 5
ER -