Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 493-513 |
Seitenumfang | 21 |
Fachzeitschrift | Discrete and Continuous Dynamical Systems |
Jahrgang | 19 |
Ausgabenummer | 3 |
Publikationsstatus | Veröffentlicht - Nov. 2007 |
Abstract
After some remarks on a possible zero-curvature formulation we first establish local well-posedness for the 2-component Camassa-Holm equation. Then precise blow-up scenarios for strong solutions to the system are derived. Finally we present two blow-up results for strong solutions to the system.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Diskrete Mathematik und Kombinatorik
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Discrete and Continuous Dynamical Systems, Jahrgang 19, Nr. 3, 11.2007, S. 493-513.
Publikation: Beitrag in Fachzeitschrift › Konferenzaufsatz in Fachzeitschrift › Forschung › Peer-Review
}
TY - JOUR
T1 - Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation
AU - Escher, Joachim
AU - Lechtenfeld, Olaf
AU - Yin, Zhaoyang
PY - 2007/11
Y1 - 2007/11
N2 - After some remarks on a possible zero-curvature formulation we first establish local well-posedness for the 2-component Camassa-Holm equation. Then precise blow-up scenarios for strong solutions to the system are derived. Finally we present two blow-up results for strong solutions to the system.
AB - After some remarks on a possible zero-curvature formulation we first establish local well-posedness for the 2-component Camassa-Holm equation. Then precise blow-up scenarios for strong solutions to the system are derived. Finally we present two blow-up results for strong solutions to the system.
KW - Blow-up phenomena
KW - Local well-posedness
KW - Strong solutions
KW - The 2-component Camass-Holm equation
UR - http://www.scopus.com/inward/record.url?scp=37349112214&partnerID=8YFLogxK
U2 - 10.3934/dcds.2007.19.493
DO - 10.3934/dcds.2007.19.493
M3 - Conference article
AN - SCOPUS:37349112214
VL - 19
SP - 493
EP - 513
JO - Discrete and Continuous Dynamical Systems
JF - Discrete and Continuous Dynamical Systems
SN - 1078-0947
IS - 3
ER -