Weights and Nilpotent Subgroups

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Gabriel Navarro
  • Benjamin Sambale

Externe Organisationen

  • Universitat de Valencia
  • Friedrich-Schiller-Universität Jena
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)2526-2538
Seitenumfang13
FachzeitschriftInternational Mathematics Research Notices
Jahrgang2021
Ausgabenummer4
Frühes Online-Datum19 Aug. 2019
PublikationsstatusVeröffentlicht - Feb. 2021
Extern publiziertJa

Abstract

In a finite group $G$, we consider nilpotent weights and prove a $\pi $-version of the Alperin Weight Conjecture for certain $\pi $-separable groups. This widely generalizes an earlier result by I. M. Isaacs and the 1st author.

ASJC Scopus Sachgebiete

Zitieren

Weights and Nilpotent Subgroups. / Navarro, Gabriel; Sambale, Benjamin.
in: International Mathematics Research Notices, Jahrgang 2021, Nr. 4, 02.2021, S. 2526-2538.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Navarro G, Sambale B. Weights and Nilpotent Subgroups. International Mathematics Research Notices. 2021 Feb;2021(4):2526-2538. Epub 2019 Aug 19. doi: 10.1093/imrn/rnz195
Navarro, Gabriel ; Sambale, Benjamin. / Weights and Nilpotent Subgroups. in: International Mathematics Research Notices. 2021 ; Jahrgang 2021, Nr. 4. S. 2526-2538.
Download
@article{fdc73c5cbc094e039ee7010bbdc70a91,
title = "Weights and Nilpotent Subgroups",
abstract = "In a finite group $G$, we consider nilpotent weights and prove a $\pi $-version of the Alperin Weight Conjecture for certain $\pi $-separable groups. This widely generalizes an earlier result by I. M. Isaacs and the 1st author.",
author = "Gabriel Navarro and Benjamin Sambale",
note = "Publisher Copyright: {\textcopyright} 2019 The Author(s). Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.",
year = "2021",
month = feb,
doi = "10.1093/imrn/rnz195",
language = "English",
volume = "2021",
pages = "2526--2538",
journal = "International Mathematics Research Notices",
issn = "1073-7928",
publisher = "Oxford University Press",
number = "4",

}

Download

TY - JOUR

T1 - Weights and Nilpotent Subgroups

AU - Navarro, Gabriel

AU - Sambale, Benjamin

N1 - Publisher Copyright: © 2019 The Author(s). Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

PY - 2021/2

Y1 - 2021/2

N2 - In a finite group $G$, we consider nilpotent weights and prove a $\pi $-version of the Alperin Weight Conjecture for certain $\pi $-separable groups. This widely generalizes an earlier result by I. M. Isaacs and the 1st author.

AB - In a finite group $G$, we consider nilpotent weights and prove a $\pi $-version of the Alperin Weight Conjecture for certain $\pi $-separable groups. This widely generalizes an earlier result by I. M. Isaacs and the 1st author.

UR - http://www.scopus.com/inward/record.url?scp=85117064408&partnerID=8YFLogxK

U2 - 10.1093/imrn/rnz195

DO - 10.1093/imrn/rnz195

M3 - Article

VL - 2021

SP - 2526

EP - 2538

JO - International Mathematics Research Notices

JF - International Mathematics Research Notices

SN - 1073-7928

IS - 4

ER -