Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 2526-2538 |
Seitenumfang | 13 |
Fachzeitschrift | International Mathematics Research Notices |
Jahrgang | 2021 |
Ausgabenummer | 4 |
Frühes Online-Datum | 19 Aug. 2019 |
Publikationsstatus | Veröffentlicht - Feb. 2021 |
Extern publiziert | Ja |
Abstract
In a finite group $G$, we consider nilpotent weights and prove a $\pi $-version of the Alperin Weight Conjecture for certain $\pi $-separable groups. This widely generalizes an earlier result by I. M. Isaacs and the 1st author.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Mathematics Research Notices, Jahrgang 2021, Nr. 4, 02.2021, S. 2526-2538.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Weights and Nilpotent Subgroups
AU - Navarro, Gabriel
AU - Sambale, Benjamin
N1 - Publisher Copyright: © 2019 The Author(s). Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
PY - 2021/2
Y1 - 2021/2
N2 - In a finite group $G$, we consider nilpotent weights and prove a $\pi $-version of the Alperin Weight Conjecture for certain $\pi $-separable groups. This widely generalizes an earlier result by I. M. Isaacs and the 1st author.
AB - In a finite group $G$, we consider nilpotent weights and prove a $\pi $-version of the Alperin Weight Conjecture for certain $\pi $-separable groups. This widely generalizes an earlier result by I. M. Isaacs and the 1st author.
UR - http://www.scopus.com/inward/record.url?scp=85117064408&partnerID=8YFLogxK
U2 - 10.1093/imrn/rnz195
DO - 10.1093/imrn/rnz195
M3 - Article
VL - 2021
SP - 2526
EP - 2538
JO - International Mathematics Research Notices
JF - International Mathematics Research Notices
SN - 1073-7928
IS - 4
ER -