Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 1614 |
Fachzeitschrift | Metals |
Jahrgang | 13 |
Ausgabenummer | 9 |
Publikationsstatus | Veröffentlicht - 19 Sept. 2023 |
Abstract
In the current study, the wear behavior of bronze-bonded grinding tools when grinding the titanium alloy Ti-6Al-4V was explored. In this process, oxidation plays a key role since both the bronze bond and the titanium workpiece chemically react with oxygen. The oxidation effect is intensified further due to increased temperatures during grinding and can cause tribo-oxidation. This wear effect can be reduced or even eliminated by grinding in an extreme high-vacuum (XHV) adequate atmosphere. This atmosphere is nearly oxygen-free and is generated using a silane-doped argon gas that chemically reacts with oxygen. This reaction is able to decrease the oxygen partial pressure (pO2 ≤ 10−12 mbar) down to an XHV-adequate atmosphere. The aim of this paper is to investigate the influence of oxygen in the atmosphere on the application and wear behavior during grinding and to demonstrate the potential of this novel approach. The results presented show that during grinding with cBN, the process forces are significantly influenced by the atmosphere. Depending on the process parameters, a reduction of up to 93% is thus possible. This force reduction correlates with radial tool wear. When grinding under oxygen-free conditions, it can be reduced by up to 64%.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
- Werkstoffwissenschaften (insg.)
- Metalle und Legierungen
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Metals, Jahrgang 13, Nr. 9, 1614, 19.09.2023.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Wear Behavior of Metal Bonded Grinding Tools When Grinding Ti-6Al-4V in an Oxygen-Free Atmosphere
AU - Denkena, Berend
AU - Bergmann, Benjamin
AU - Hansen, Nils
AU - Heller, Christian
N1 - Funding Information: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)–Project-ID 394563137–SFB 1368 (TP-C04).
PY - 2023/9/19
Y1 - 2023/9/19
N2 - In the current study, the wear behavior of bronze-bonded grinding tools when grinding the titanium alloy Ti-6Al-4V was explored. In this process, oxidation plays a key role since both the bronze bond and the titanium workpiece chemically react with oxygen. The oxidation effect is intensified further due to increased temperatures during grinding and can cause tribo-oxidation. This wear effect can be reduced or even eliminated by grinding in an extreme high-vacuum (XHV) adequate atmosphere. This atmosphere is nearly oxygen-free and is generated using a silane-doped argon gas that chemically reacts with oxygen. This reaction is able to decrease the oxygen partial pressure (pO2 ≤ 10−12 mbar) down to an XHV-adequate atmosphere. The aim of this paper is to investigate the influence of oxygen in the atmosphere on the application and wear behavior during grinding and to demonstrate the potential of this novel approach. The results presented show that during grinding with cBN, the process forces are significantly influenced by the atmosphere. Depending on the process parameters, a reduction of up to 93% is thus possible. This force reduction correlates with radial tool wear. When grinding under oxygen-free conditions, it can be reduced by up to 64%.
AB - In the current study, the wear behavior of bronze-bonded grinding tools when grinding the titanium alloy Ti-6Al-4V was explored. In this process, oxidation plays a key role since both the bronze bond and the titanium workpiece chemically react with oxygen. The oxidation effect is intensified further due to increased temperatures during grinding and can cause tribo-oxidation. This wear effect can be reduced or even eliminated by grinding in an extreme high-vacuum (XHV) adequate atmosphere. This atmosphere is nearly oxygen-free and is generated using a silane-doped argon gas that chemically reacts with oxygen. This reaction is able to decrease the oxygen partial pressure (pO2 ≤ 10−12 mbar) down to an XHV-adequate atmosphere. The aim of this paper is to investigate the influence of oxygen in the atmosphere on the application and wear behavior during grinding and to demonstrate the potential of this novel approach. The results presented show that during grinding with cBN, the process forces are significantly influenced by the atmosphere. Depending on the process parameters, a reduction of up to 93% is thus possible. This force reduction correlates with radial tool wear. When grinding under oxygen-free conditions, it can be reduced by up to 64%.
KW - forces
KW - grinding
KW - wear
UR - http://www.scopus.com/inward/record.url?scp=85172790611&partnerID=8YFLogxK
U2 - 10.3390/met13091614
DO - 10.3390/met13091614
M3 - Article
AN - SCOPUS:85172790611
VL - 13
JO - Metals
JF - Metals
SN - 2075-4701
IS - 9
M1 - 1614
ER -