Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 105800 |
Seitenumfang | 13 |
Fachzeitschrift | Structures |
Jahrgang | 59 |
Frühes Online-Datum | 28 Dez. 2023 |
Publikationsstatus | Veröffentlicht - Jan. 2024 |
Abstract
The slenderness ratio, particularly pronounced in offshore wind turbines (OWTs) with values exceeding five, renders them highly susceptible to dynamic sensitivity when exposed to lateral loads, setting them apart from conventional structures. The simultaneous interaction of wind and wave forces often results in the generation of extreme vibrations, ultimately jeopardizing the structural integrity of offshore wind turbines. This study is dedicated to assessing the effectiveness of distributed tuned mass dampers (d-TMDs) in mitigating responses in OWTs when subjected to the concurrent action of wind and wave forces. The finite element model (FEM) for the OWT, accounting for its multi-degree of freedom (MDOF) nature, is meticulously constructed using ANSYS software. The analysis encompasses uncontrolled offshore wind turbines (NC), those equipped with single tuned mass dampers (STMD), and variants featuring d-TMDs. These structures are exposed to random wind and wave loading conditions, mirroring real-world scenarios and necessitating the deployment of control schemes to counteract the adverse vibrations induced. Consequently, wind and wave spectra are generated using the Kaimal spectrum and Pierson and Moskowitz spectrum, respectively, with drag wave forces calculated through Morison's equation. Moreover, the study takes into account the impact of soil-structure interaction (SSI), incorporating both rotational and lateral springs. The results, comprising displacement and acceleration responses at the pinnacle of the OWT, facilitate a comprehensive comparison between the responses of the NC, STMD, and d-TMD configurations. In single hazard analysis, it is evident that TMDs exhibit greater efficacy in mitigating wind-induced responses in offshore wind turbines compared to wave-induced responses. Furthermore, d-TMD schemes demonstrate superior performance in enhancing the response of flexible base offshore wind turbines as opposed to their fixed base counterparts.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Tief- und Ingenieurbau
- Ingenieurwesen (insg.)
- Architektur
- Ingenieurwesen (insg.)
- Bauwesen
- Ingenieurwesen (insg.)
- Sicherheit, Risiko, Zuverlässigkeit und Qualität
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Structures, Jahrgang 59, 105800, 01.2024.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Vibration improvement of offshore wind turbines under multiple hazards
AU - Elias, Said
PY - 2024/1
Y1 - 2024/1
N2 - The slenderness ratio, particularly pronounced in offshore wind turbines (OWTs) with values exceeding five, renders them highly susceptible to dynamic sensitivity when exposed to lateral loads, setting them apart from conventional structures. The simultaneous interaction of wind and wave forces often results in the generation of extreme vibrations, ultimately jeopardizing the structural integrity of offshore wind turbines. This study is dedicated to assessing the effectiveness of distributed tuned mass dampers (d-TMDs) in mitigating responses in OWTs when subjected to the concurrent action of wind and wave forces. The finite element model (FEM) for the OWT, accounting for its multi-degree of freedom (MDOF) nature, is meticulously constructed using ANSYS software. The analysis encompasses uncontrolled offshore wind turbines (NC), those equipped with single tuned mass dampers (STMD), and variants featuring d-TMDs. These structures are exposed to random wind and wave loading conditions, mirroring real-world scenarios and necessitating the deployment of control schemes to counteract the adverse vibrations induced. Consequently, wind and wave spectra are generated using the Kaimal spectrum and Pierson and Moskowitz spectrum, respectively, with drag wave forces calculated through Morison's equation. Moreover, the study takes into account the impact of soil-structure interaction (SSI), incorporating both rotational and lateral springs. The results, comprising displacement and acceleration responses at the pinnacle of the OWT, facilitate a comprehensive comparison between the responses of the NC, STMD, and d-TMD configurations. In single hazard analysis, it is evident that TMDs exhibit greater efficacy in mitigating wind-induced responses in offshore wind turbines compared to wave-induced responses. Furthermore, d-TMD schemes demonstrate superior performance in enhancing the response of flexible base offshore wind turbines as opposed to their fixed base counterparts.
AB - The slenderness ratio, particularly pronounced in offshore wind turbines (OWTs) with values exceeding five, renders them highly susceptible to dynamic sensitivity when exposed to lateral loads, setting them apart from conventional structures. The simultaneous interaction of wind and wave forces often results in the generation of extreme vibrations, ultimately jeopardizing the structural integrity of offshore wind turbines. This study is dedicated to assessing the effectiveness of distributed tuned mass dampers (d-TMDs) in mitigating responses in OWTs when subjected to the concurrent action of wind and wave forces. The finite element model (FEM) for the OWT, accounting for its multi-degree of freedom (MDOF) nature, is meticulously constructed using ANSYS software. The analysis encompasses uncontrolled offshore wind turbines (NC), those equipped with single tuned mass dampers (STMD), and variants featuring d-TMDs. These structures are exposed to random wind and wave loading conditions, mirroring real-world scenarios and necessitating the deployment of control schemes to counteract the adverse vibrations induced. Consequently, wind and wave spectra are generated using the Kaimal spectrum and Pierson and Moskowitz spectrum, respectively, with drag wave forces calculated through Morison's equation. Moreover, the study takes into account the impact of soil-structure interaction (SSI), incorporating both rotational and lateral springs. The results, comprising displacement and acceleration responses at the pinnacle of the OWT, facilitate a comprehensive comparison between the responses of the NC, STMD, and d-TMD configurations. In single hazard analysis, it is evident that TMDs exhibit greater efficacy in mitigating wind-induced responses in offshore wind turbines compared to wave-induced responses. Furthermore, d-TMD schemes demonstrate superior performance in enhancing the response of flexible base offshore wind turbines as opposed to their fixed base counterparts.
KW - ANSYS, Offshore wind turbine
KW - Random loading
KW - Soil-structure interaction
KW - Tuned mass damper
UR - http://www.scopus.com/inward/record.url?scp=85181170910&partnerID=8YFLogxK
U2 - 10.1016/j.istruc.2023.105800
DO - 10.1016/j.istruc.2023.105800
M3 - Article
AN - SCOPUS:85181170910
VL - 59
JO - Structures
JF - Structures
SN - 2352-0124
M1 - 105800
ER -