Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 7959-7983 |
Seitenumfang | 25 |
Fachzeitschrift | Transactions of the American Mathematical Society |
Jahrgang | 370 |
Ausgabenummer | 11 |
Frühes Online-Datum | 30 Mai 2018 |
Publikationsstatus | Veröffentlicht - 2018 |
Extern publiziert | Ja |
Abstract
We study the class of compact Kähler manifolds with trivial canonical bundle and the property that the cohomology of the trivial line bundle is generated by one element. If the square of the generator is zero, we get the class of strict Calabi–Yau manifolds. If the generator is of degree 2, we get the class of compact hyperkähler manifolds. We provide some examples and structure results for the cases where the generator is of higher nilpotency index and degree. In particular, we show that varieties of this type are closely related to higher-dimensional Enriques varieties.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Transactions of the American Mathematical Society, Jahrgang 370, Nr. 11, 2018, S. 7959-7983.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Varieties with ℙ-units
AU - Krug, Andreas
PY - 2018
Y1 - 2018
N2 - We study the class of compact Kähler manifolds with trivial canonical bundle and the property that the cohomology of the trivial line bundle is generated by one element. If the square of the generator is zero, we get the class of strict Calabi–Yau manifolds. If the generator is of degree 2, we get the class of compact hyperkähler manifolds. We provide some examples and structure results for the cases where the generator is of higher nilpotency index and degree. In particular, we show that varieties of this type are closely related to higher-dimensional Enriques varieties.
AB - We study the class of compact Kähler manifolds with trivial canonical bundle and the property that the cohomology of the trivial line bundle is generated by one element. If the square of the generator is zero, we get the class of strict Calabi–Yau manifolds. If the generator is of degree 2, we get the class of compact hyperkähler manifolds. We provide some examples and structure results for the cases where the generator is of higher nilpotency index and degree. In particular, we show that varieties of this type are closely related to higher-dimensional Enriques varieties.
UR - http://www.scopus.com/inward/record.url?scp=85055091019&partnerID=8YFLogxK
U2 - 10.1090/tran/7218
DO - 10.1090/tran/7218
M3 - Article
AN - SCOPUS:85055091019
VL - 370
SP - 7959
EP - 7983
JO - Transactions of the American Mathematical Society
JF - Transactions of the American Mathematical Society
SN - 0002-9947
IS - 11
ER -