Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 677-694 |
Seitenumfang | 18 |
Fachzeitschrift | Discrete and Continuous Dynamical Systems - Series S |
Jahrgang | 14 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - Feb. 2021 |
Abstract
The existence of weak solutions to the obstacle problem for a non-local semilinear fourth-order parabolic equation is shown, using its underlying gradient flow structure. The model governs the dynamics of a microelectromechanical system with heterogeneous dielectric properties.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Diskrete Mathematik und Kombinatorik
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Discrete and Continuous Dynamical Systems - Series S, Jahrgang 14, Nr. 2, 02.2021, S. 677-694.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Variational solutions to an evolution model for mems with heterogeneous dielectric properties
AU - Laurençot, Philippe
AU - Walker, Christoph
PY - 2021/2
Y1 - 2021/2
N2 - The existence of weak solutions to the obstacle problem for a non-local semilinear fourth-order parabolic equation is shown, using its underlying gradient flow structure. The model governs the dynamics of a microelectromechanical system with heterogeneous dielectric properties.
AB - The existence of weak solutions to the obstacle problem for a non-local semilinear fourth-order parabolic equation is shown, using its underlying gradient flow structure. The model governs the dynamics of a microelectromechanical system with heterogeneous dielectric properties.
KW - Fourth-order equation
KW - Gradient flow
KW - MEMS
KW - Obstacle problem
KW - Transmission problem
UR - http://www.scopus.com/inward/record.url?scp=85099718973&partnerID=8YFLogxK
U2 - 10.3934/dcdss.2020360
DO - 10.3934/dcdss.2020360
M3 - Article
AN - SCOPUS:85099718973
VL - 14
SP - 677
EP - 694
JO - Discrete and Continuous Dynamical Systems - Series S
JF - Discrete and Continuous Dynamical Systems - Series S
SN - 1937-1632
IS - 2
ER -