Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 4237 |
Fachzeitschrift | Sensors |
Jahrgang | 22 |
Ausgabenummer | 11 |
Publikationsstatus | Veröffentlicht - 2 Juni 2022 |
Extern publiziert | Ja |
Abstract
Inertial Measurement Units (IMUs) have gained popularity in gait analysis and human motion tracking, and they provide certain advantages over stationary line-of-sight-dependent Optical Motion Capture (OMC) systems. IMUs appear as an appropriate alternative solution to reduce dependency on bulky, room-based hardware and facilitate the analysis of walking patterns in clinical settings and daily life activities. However, most inertial gait analysis methods are unpractical in clinical settings due to the necessity of precise sensor placement, the need for well-performed calibration movements and poses, and due to distorted magnetometer data in indoor environments as well as nearby ferromagnetic material and electronic devices. To address these limitations, recent literature has proposed methods for self-calibrating magnetometer-free inertial motion tracking, and acceptable performance has been achieved in mechanical joints and in individuals without neurological disorders. However, the performance of such methods has not been validated in clinical settings for individuals with neurological disorders, specifically individuals with incomplete Spinal Cord Injury (iSCI). In the present study, we used recently proposed inertial motion-tracking methods, which avoid magnetometer data and leverage kinematic constraints for anatomical calibration. We used these methods to determine the range of motion of the Flexion/Extension (F/E) hip and Abduction/Adduction (A/A) angles, the F/E knee angles, and the Dorsi/Plantar (D/P) flexion ankle joint angles during walking. Data (IMU and OMC) of five individuals with no neurological disorders (control group) and five participants with iSCI walking for two minutes on a treadmill in a self-paced mode were analyzed. For validation purposes, the OMC system was considered as a reference. The mean absolute difference (MAD) between calculated range of motion of joint angles was 5.00°, 5.02°, 5.26°, and 3.72° for hip F/E, hip A/A, knee F/E, and ankle D/P flexion angles, respectively. In addition, relative stance, swing, double support phases, and cadence were calculated and validated. The MAD for the relative gait phases (stance, swing, and double support) was 1.7%, and the average cadence error was 0.09 steps/min. The MAD values for RoM and relative gait phases can be considered as clinically acceptable. Therefore, we conclude that the proposed methodology is promising, enabling non-restrictive inertial gait analysis in clinical settings.
ASJC Scopus Sachgebiete
- Chemie (insg.)
- Analytische Chemie
- Informatik (insg.)
- Information systems
- Physik und Astronomie (insg.)
- Atom- und Molekularphysik sowie Optik
- Biochemie, Genetik und Molekularbiologie (insg.)
- Biochemie
- Physik und Astronomie (insg.)
- Instrumentierung
- Ingenieurwesen (insg.)
- Elektrotechnik und Elektronik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Sensors, Jahrgang 22, Nr. 11, 4237, 02.06.2022.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Validation of Non-Restrictive Inertial Gait Analysis of Individuals with Incomplete Spinal Cord Injury in Clinical Settings
AU - Hassani, Roushanak Haji
AU - Willi, Romina
AU - Rauter, Georg
AU - Bolliger, Marc
AU - Seel, Thomas
N1 - Funding Information: This work was partially supported by the Spinal Cord Injury Centre, University Hospital Balgrist, Zurich, Switzerland, Swiss Center for Clinical Movement Analysis (SCMA), Balgrist Campus AG, Zurich, Switzerland and the Bio-Inspired Robots for MEDicine-Laboratory (BIROMED-Lab), University of Basel, Basel, Switzerland.
PY - 2022/6/2
Y1 - 2022/6/2
N2 - Inertial Measurement Units (IMUs) have gained popularity in gait analysis and human motion tracking, and they provide certain advantages over stationary line-of-sight-dependent Optical Motion Capture (OMC) systems. IMUs appear as an appropriate alternative solution to reduce dependency on bulky, room-based hardware and facilitate the analysis of walking patterns in clinical settings and daily life activities. However, most inertial gait analysis methods are unpractical in clinical settings due to the necessity of precise sensor placement, the need for well-performed calibration movements and poses, and due to distorted magnetometer data in indoor environments as well as nearby ferromagnetic material and electronic devices. To address these limitations, recent literature has proposed methods for self-calibrating magnetometer-free inertial motion tracking, and acceptable performance has been achieved in mechanical joints and in individuals without neurological disorders. However, the performance of such methods has not been validated in clinical settings for individuals with neurological disorders, specifically individuals with incomplete Spinal Cord Injury (iSCI). In the present study, we used recently proposed inertial motion-tracking methods, which avoid magnetometer data and leverage kinematic constraints for anatomical calibration. We used these methods to determine the range of motion of the Flexion/Extension (F/E) hip and Abduction/Adduction (A/A) angles, the F/E knee angles, and the Dorsi/Plantar (D/P) flexion ankle joint angles during walking. Data (IMU and OMC) of five individuals with no neurological disorders (control group) and five participants with iSCI walking for two minutes on a treadmill in a self-paced mode were analyzed. For validation purposes, the OMC system was considered as a reference. The mean absolute difference (MAD) between calculated range of motion of joint angles was 5.00°, 5.02°, 5.26°, and 3.72° for hip F/E, hip A/A, knee F/E, and ankle D/P flexion angles, respectively. In addition, relative stance, swing, double support phases, and cadence were calculated and validated. The MAD for the relative gait phases (stance, swing, and double support) was 1.7%, and the average cadence error was 0.09 steps/min. The MAD values for RoM and relative gait phases can be considered as clinically acceptable. Therefore, we conclude that the proposed methodology is promising, enabling non-restrictive inertial gait analysis in clinical settings.
AB - Inertial Measurement Units (IMUs) have gained popularity in gait analysis and human motion tracking, and they provide certain advantages over stationary line-of-sight-dependent Optical Motion Capture (OMC) systems. IMUs appear as an appropriate alternative solution to reduce dependency on bulky, room-based hardware and facilitate the analysis of walking patterns in clinical settings and daily life activities. However, most inertial gait analysis methods are unpractical in clinical settings due to the necessity of precise sensor placement, the need for well-performed calibration movements and poses, and due to distorted magnetometer data in indoor environments as well as nearby ferromagnetic material and electronic devices. To address these limitations, recent literature has proposed methods for self-calibrating magnetometer-free inertial motion tracking, and acceptable performance has been achieved in mechanical joints and in individuals without neurological disorders. However, the performance of such methods has not been validated in clinical settings for individuals with neurological disorders, specifically individuals with incomplete Spinal Cord Injury (iSCI). In the present study, we used recently proposed inertial motion-tracking methods, which avoid magnetometer data and leverage kinematic constraints for anatomical calibration. We used these methods to determine the range of motion of the Flexion/Extension (F/E) hip and Abduction/Adduction (A/A) angles, the F/E knee angles, and the Dorsi/Plantar (D/P) flexion ankle joint angles during walking. Data (IMU and OMC) of five individuals with no neurological disorders (control group) and five participants with iSCI walking for two minutes on a treadmill in a self-paced mode were analyzed. For validation purposes, the OMC system was considered as a reference. The mean absolute difference (MAD) between calculated range of motion of joint angles was 5.00°, 5.02°, 5.26°, and 3.72° for hip F/E, hip A/A, knee F/E, and ankle D/P flexion angles, respectively. In addition, relative stance, swing, double support phases, and cadence were calculated and validated. The MAD for the relative gait phases (stance, swing, and double support) was 1.7%, and the average cadence error was 0.09 steps/min. The MAD values for RoM and relative gait phases can be considered as clinically acceptable. Therefore, we conclude that the proposed methodology is promising, enabling non-restrictive inertial gait analysis in clinical settings.
KW - clinical gait assessment
KW - incomplete spinal cord injury
KW - inertial gait analysis
KW - inertial measurement units
KW - optical motion capture
KW - range of motion
KW - temporal gait parameters
KW - validation
UR - http://www.scopus.com/inward/record.url?scp=85131162877&partnerID=8YFLogxK
U2 - 10.3390/s22114237
DO - 10.3390/s22114237
M3 - Article
C2 - 35684860
AN - SCOPUS:85131162877
VL - 22
JO - Sensors
JF - Sensors
SN - 1424-8220
IS - 11
M1 - 4237
ER -