Details
Titel in Übersetzung | Investigation of the flow behavior of wrought magnesium alloy AZ31using layer compression and tensile tests |
---|---|
Originalsprache | Deutsch |
Seiten (von - bis) | 760-767 |
Seitenumfang | 8 |
Fachzeitschrift | Materialwissenschaft und Werkstofftechnik |
Jahrgang | 44 |
Ausgabenummer | 9 |
Publikationsstatus | Veröffentlicht - 14 Sept. 2013 |
Abstract
Today design of metal forming processes is often supported by numerical simulation. To obtain realistic simulation results, the used material models need accurate material parameters from the material characterization. Magnesium alloys in particular are not yet sufficiently investigated. Therefore, their material parameters are scarce in literature. Especially determination of flow curves at higher degrees of deformation represents a challenge, but is necessary in order to describe the characteristic hardening and softening, as they occur in magnesium materials at elevated temperature of forming process. In this paper, an approach for the determination of a combined hardening curve from a tensile test and a layer compression test is presented. For this purpose, the corresponding values are recorded experimentally and evaluated based on the principle of the plastic work equivalence.
Schlagwörter
- Deep drawing, Magnesium, Material characteristic
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Allgemeine Materialwissenschaften
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Ingenieurwesen (insg.)
- Werkstoffmechanik
- Ingenieurwesen (insg.)
- Maschinenbau
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Materialwissenschaft und Werkstofftechnik, Jahrgang 44, Nr. 9, 14.09.2013, S. 760-767.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Untersuchung des Fließverhaltens der Magnesiumknetlegierung AZ31 mit Hilfe von Schichtstauch- und Zugversuchen
AU - Behrens, B. A.
AU - Bouguecha, A.
AU - Huinink, T.
AU - Peshekhodov, I.
AU - Matthias, T.
AU - Moritz, J.
AU - Schrödter, J.
PY - 2013/9/14
Y1 - 2013/9/14
N2 - Today design of metal forming processes is often supported by numerical simulation. To obtain realistic simulation results, the used material models need accurate material parameters from the material characterization. Magnesium alloys in particular are not yet sufficiently investigated. Therefore, their material parameters are scarce in literature. Especially determination of flow curves at higher degrees of deformation represents a challenge, but is necessary in order to describe the characteristic hardening and softening, as they occur in magnesium materials at elevated temperature of forming process. In this paper, an approach for the determination of a combined hardening curve from a tensile test and a layer compression test is presented. For this purpose, the corresponding values are recorded experimentally and evaluated based on the principle of the plastic work equivalence.
AB - Today design of metal forming processes is often supported by numerical simulation. To obtain realistic simulation results, the used material models need accurate material parameters from the material characterization. Magnesium alloys in particular are not yet sufficiently investigated. Therefore, their material parameters are scarce in literature. Especially determination of flow curves at higher degrees of deformation represents a challenge, but is necessary in order to describe the characteristic hardening and softening, as they occur in magnesium materials at elevated temperature of forming process. In this paper, an approach for the determination of a combined hardening curve from a tensile test and a layer compression test is presented. For this purpose, the corresponding values are recorded experimentally and evaluated based on the principle of the plastic work equivalence.
KW - Deep drawing
KW - Magnesium
KW - Material characteristic
UR - http://www.scopus.com/inward/record.url?scp=84884970908&partnerID=8YFLogxK
U2 - 10.1002/mawe.201300120
DO - 10.1002/mawe.201300120
M3 - Artikel
AN - SCOPUS:84884970908
VL - 44
SP - 760
EP - 767
JO - Materialwissenschaft und Werkstofftechnik
JF - Materialwissenschaft und Werkstofftechnik
SN - 0933-5137
IS - 9
ER -