Unirational moduli spaces of some elliptic K3 surfaces

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Mauro Fortuna
  • Michael Hoff
  • Giacomo Mezzedimi

Organisationseinheiten

Externe Organisationen

  • Universität des Saarlandes
  • Rheinische Friedrich-Wilhelms-Universität Bonn
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)405-423
Seitenumfang19
FachzeitschriftManuscripta Mathematica
Jahrgang173
Ausgabenummer1-2
Frühes Online-Datum5 Jan. 2023
PublikationsstatusVeröffentlicht - Jan. 2024

Abstract

We show that the moduli space of U⊕⟨−2k⟩-polarized K3 surfaces is unirational for k≤50 and k∉{11,35,42,48}, and for other several values of k up to k=97. Our proof is based on a systematic study of the projective models of elliptic K3 surfaces in Pn for 3≤n≤5 containing either the union of two rational curves or the union of a rational and an elliptic curve intersecting at one point.

ASJC Scopus Sachgebiete

Zitieren

Unirational moduli spaces of some elliptic K3 surfaces. / Fortuna, Mauro; Hoff, Michael; Mezzedimi, Giacomo.
in: Manuscripta Mathematica, Jahrgang 173, Nr. 1-2, 01.2024, S. 405-423.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Fortuna M, Hoff M, Mezzedimi G. Unirational moduli spaces of some elliptic K3 surfaces. Manuscripta Mathematica. 2024 Jan;173(1-2):405-423. Epub 2023 Jan 5. doi: 10.48550/arXiv.2008.12077, 10.1007/s00229-022-01455-2
Fortuna, Mauro ; Hoff, Michael ; Mezzedimi, Giacomo. / Unirational moduli spaces of some elliptic K3 surfaces. in: Manuscripta Mathematica. 2024 ; Jahrgang 173, Nr. 1-2. S. 405-423.
Download
@article{73d1424bf9f24e0eb3e9f7e98e8cb910,
title = "Unirational moduli spaces of some elliptic K3 surfaces",
abstract = "We show that the moduli space of U⊕⟨−2k⟩-polarized K3 surfaces is unirational for k≤50 and k∉{11,35,42,48}, and for other several values of k up to k=97. Our proof is based on a systematic study of the projective models of elliptic K3 surfaces in Pn for 3≤n≤5 containing either the union of two rational curves or the union of a rational and an elliptic curve intersecting at one point. ",
author = "Mauro Fortuna and Michael Hoff and Giacomo Mezzedimi",
note = "Funding Information: We would like to thank Klaus Hulek and Matthias Sch{\"u}tt for useful discussions and for reading an early draft of this manuscript. We also thank the anonymous referee for carefully reading the paper and suggesting several improvements. The first author acknowledges partial support from the DFG Grant Hu 337/7-1.",
year = "2024",
month = jan,
doi = "10.48550/arXiv.2008.12077",
language = "English",
volume = "173",
pages = "405--423",
journal = "Manuscripta Mathematica",
issn = "0025-2611",
publisher = "Springer New York",
number = "1-2",

}

Download

TY - JOUR

T1 - Unirational moduli spaces of some elliptic K3 surfaces

AU - Fortuna, Mauro

AU - Hoff, Michael

AU - Mezzedimi, Giacomo

N1 - Funding Information: We would like to thank Klaus Hulek and Matthias Schütt for useful discussions and for reading an early draft of this manuscript. We also thank the anonymous referee for carefully reading the paper and suggesting several improvements. The first author acknowledges partial support from the DFG Grant Hu 337/7-1.

PY - 2024/1

Y1 - 2024/1

N2 - We show that the moduli space of U⊕⟨−2k⟩-polarized K3 surfaces is unirational for k≤50 and k∉{11,35,42,48}, and for other several values of k up to k=97. Our proof is based on a systematic study of the projective models of elliptic K3 surfaces in Pn for 3≤n≤5 containing either the union of two rational curves or the union of a rational and an elliptic curve intersecting at one point.

AB - We show that the moduli space of U⊕⟨−2k⟩-polarized K3 surfaces is unirational for k≤50 and k∉{11,35,42,48}, and for other several values of k up to k=97. Our proof is based on a systematic study of the projective models of elliptic K3 surfaces in Pn for 3≤n≤5 containing either the union of two rational curves or the union of a rational and an elliptic curve intersecting at one point.

UR - http://www.scopus.com/inward/record.url?scp=85145694487&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2008.12077

DO - 10.48550/arXiv.2008.12077

M3 - Article

VL - 173

SP - 405

EP - 423

JO - Manuscripta Mathematica

JF - Manuscripta Mathematica

SN - 0025-2611

IS - 1-2

ER -