Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 101-116 |
Seitenumfang | 16 |
Fachzeitschrift | Analysis (Germany) |
Jahrgang | 37 |
Ausgabenummer | 2 |
Publikationsstatus | Veröffentlicht - 1 Mai 2017 |
Abstract
We consider a model for prion proliferation that includes prion polymerization, polymer splitting, and polymer joining. The model consists of an ordinary differential equation for the prion monomers and a hyperbolic nonlinear differential equation with integral terms for the prion polymers and was shown to possess global weak solutions for unbounded reaction rates [11]. Here we prove the uniqueness of weak solutions.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Numerische Mathematik
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Analysis (Germany), Jahrgang 37, Nr. 2, 01.05.2017, S. 101-116.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Uniqueness of weak solutions to a prion equation with polymer joining
AU - Leis, Elena
AU - Walker, Christoph
N1 - Publisher Copyright: © 2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright: Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/5/1
Y1 - 2017/5/1
N2 - We consider a model for prion proliferation that includes prion polymerization, polymer splitting, and polymer joining. The model consists of an ordinary differential equation for the prion monomers and a hyperbolic nonlinear differential equation with integral terms for the prion polymers and was shown to possess global weak solutions for unbounded reaction rates [11]. Here we prove the uniqueness of weak solutions.
AB - We consider a model for prion proliferation that includes prion polymerization, polymer splitting, and polymer joining. The model consists of an ordinary differential equation for the prion monomers and a hyperbolic nonlinear differential equation with integral terms for the prion polymers and was shown to possess global weak solutions for unbounded reaction rates [11]. Here we prove the uniqueness of weak solutions.
KW - integro-differential equation
KW - polymer joining
KW - Prions
KW - uniqueness
KW - weak solutions
UR - http://www.scopus.com/inward/record.url?scp=85020376318&partnerID=8YFLogxK
U2 - 10.1515/anly-2016-0034
DO - 10.1515/anly-2016-0034
M3 - Article
AN - SCOPUS:85020376318
VL - 37
SP - 101
EP - 116
JO - Analysis (Germany)
JF - Analysis (Germany)
SN - 0174-4747
IS - 2
ER -