Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 237-298 |
Seitenumfang | 62 |
Fachzeitschrift | Annals of Mathematics |
Jahrgang | 194 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - Juli 2021 |
Extern publiziert | Ja |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Statistik und Wahrscheinlichkeit
- Entscheidungswissenschaften (insg.)
- Statistik, Wahrscheinlichkeit und Ungewissheit
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Annals of Mathematics, Jahrgang 194, Nr. 1, 07.2021, S. 237-298.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Uniformity in Mordell-Lang for curves
AU - Dimitrov, Vesselin
AU - Gao, Ziyang
AU - Habegger, Philipp
PY - 2021/7
Y1 - 2021/7
N2 - Consider a smooth, geometrically irreducible, projective curve of genus \(g \ge 2\) defined over a number field of degree \(d \ge 1\). It has at most finitely many rational points by the Mordell Conjecture, a theorem of Faltings. We show that the number of rational points is bounded only in terms of \(g\), \(d\), and the Mordell-Weil rank of the curve's Jacobian, thereby answering in the affirmative a question of Mazur. In addition we obtain uniform bounded, in \(g\) and \(d\), for the number of geometric torsion points of the Jacobian which lie in the image of an Abel-Jacobi map. Both estimates generalize our previous work for \(1\)-parameter families. Our proof uses Vojta's approach to the Mordell Conjecture, and the key new ingredient is the generalization of a height inequality due to the second- and third-named authors.
AB - Consider a smooth, geometrically irreducible, projective curve of genus \(g \ge 2\) defined over a number field of degree \(d \ge 1\). It has at most finitely many rational points by the Mordell Conjecture, a theorem of Faltings. We show that the number of rational points is bounded only in terms of \(g\), \(d\), and the Mordell-Weil rank of the curve's Jacobian, thereby answering in the affirmative a question of Mazur. In addition we obtain uniform bounded, in \(g\) and \(d\), for the number of geometric torsion points of the Jacobian which lie in the image of an Abel-Jacobi map. Both estimates generalize our previous work for \(1\)-parameter families. Our proof uses Vojta's approach to the Mordell Conjecture, and the key new ingredient is the generalization of a height inequality due to the second- and third-named authors.
KW - math.NT
KW - math.AG
KW - 11G30, 11G50, 14G05, 14G25
KW - Rational points
KW - Height inequality
KW - Mordell-lang
KW - Uniformity
UR - http://www.scopus.com/inward/record.url?scp=85129874988&partnerID=8YFLogxK
U2 - 10.4007/annals.2021.194.1.4
DO - 10.4007/annals.2021.194.1.4
M3 - Article
VL - 194
SP - 237
EP - 298
JO - Annals of Mathematics
JF - Annals of Mathematics
SN - 0003-486X
IS - 1
ER -