Details
Originalsprache | Englisch |
---|---|
Qualifikation | Doctor rerum naturalium |
Gradverleihende Hochschule | |
Betreut von |
|
Datum der Verleihung des Grades | 7 Juni 2024 |
Erscheinungsort | Hannover |
Publikationsstatus | Veröffentlicht - 14 Aug. 2024 |
Abstract
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
Hannover, 2024. 59 S.
Publikation: Qualifikations-/Studienabschlussarbeit › Dissertation
}
TY - BOOK
T1 - Uniform Bogomolov Conjecture for Tori
AU - Di, Ruida
PY - 2024/8/14
Y1 - 2024/8/14
N2 - The Bogomolov Conjecture for algebraic tori is a problem related to rational points on algebraic tori in Diophantine geometry. It inquires whether there are infinitely many non-torsion points with a canonical height tending to zero. The uniform version of this conjecture for algebraic tori was resolved in the 1990s. This dissertation presents a new proof inspired by the recent proof of the uniform Mordell-Lang Conjecture by Dimitrov-Gao-Habegger, Kühne, and Gao-Ge-Kühne.
AB - The Bogomolov Conjecture for algebraic tori is a problem related to rational points on algebraic tori in Diophantine geometry. It inquires whether there are infinitely many non-torsion points with a canonical height tending to zero. The uniform version of this conjecture for algebraic tori was resolved in the 1990s. This dissertation presents a new proof inspired by the recent proof of the uniform Mordell-Lang Conjecture by Dimitrov-Gao-Habegger, Kühne, and Gao-Ge-Kühne.
U2 - 10.15488/17842
DO - 10.15488/17842
M3 - Doctoral thesis
CY - Hannover
ER -