Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 446-464 |
Seitenumfang | 19 |
Fachzeitschrift | Composites Part B: Engineering |
Jahrgang | 68 |
Publikationsstatus | Veröffentlicht - 22 Sept. 2015 |
Extern publiziert | Ja |
Abstract
We propose a stochastic multiscale method to quantify the correlated key-input parameters influencing the mechanical properties of polymer nanocomposites (PNCs). The variations of parameters at nano-, micro-, meso- and macro-scales are connected by a hierarchical multiscale approach. The first-order and total-effect sensitivity indices are determined first. The input parameters include the single-walled carbon nanotube (SWNT) length, the SWNT waviness, the agglomeration and volume fraction of SWNTs. Stochastic methods consistently predict that the key parameters for the Young's modulus of the composite are the volume fraction followed by the averaged longitudinal modulus of equivalent fiber (EF), the SWNT length, and the averaged transverse modulus of the EF, respectively. The averaged longitudinal modulus of the EF is estimated to be the most important parameter with respect to the Poisson's ratio followed by the volume fraction, the SWNT length, and the averaged transverse modulus of the EF, respectively. On the other hand, the agglomeration parameters have insignificant effect on both Young's modulus and Poisson's ratio compared to other parameters. The sensitivity analysis (SA) also reveals the correlation between the input parameters and its effect on the mechanical properties.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Keramische und Verbundwerkstoffe
- Ingenieurwesen (insg.)
- Werkstoffmechanik
- Ingenieurwesen (insg.)
- Maschinenbau
- Ingenieurwesen (insg.)
- Wirtschaftsingenieurwesen und Fertigungstechnik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Composites Part B: Engineering, Jahrgang 68, 22.09.2015, S. 446-464.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters
AU - Vu-Bac, N.
AU - Rafiee, Roham
AU - Zhuang, Xiaoying
AU - Lahmer, T.
AU - Rabczuk, Timon
N1 - Funding information: We gratefully acknowledge the support by the Deutscher Akademischer Austausch Dienst (DAAD) and Alexander von Humboldt Foundation . Xiaoying Zhuang acknowledges the support of Natural Science Foundation of China ( NSFC 41130751 ) and National Basic Research Program of China (973 Program: 2011CB013800 ).
PY - 2015/9/22
Y1 - 2015/9/22
N2 - We propose a stochastic multiscale method to quantify the correlated key-input parameters influencing the mechanical properties of polymer nanocomposites (PNCs). The variations of parameters at nano-, micro-, meso- and macro-scales are connected by a hierarchical multiscale approach. The first-order and total-effect sensitivity indices are determined first. The input parameters include the single-walled carbon nanotube (SWNT) length, the SWNT waviness, the agglomeration and volume fraction of SWNTs. Stochastic methods consistently predict that the key parameters for the Young's modulus of the composite are the volume fraction followed by the averaged longitudinal modulus of equivalent fiber (EF), the SWNT length, and the averaged transverse modulus of the EF, respectively. The averaged longitudinal modulus of the EF is estimated to be the most important parameter with respect to the Poisson's ratio followed by the volume fraction, the SWNT length, and the averaged transverse modulus of the EF, respectively. On the other hand, the agglomeration parameters have insignificant effect on both Young's modulus and Poisson's ratio compared to other parameters. The sensitivity analysis (SA) also reveals the correlation between the input parameters and its effect on the mechanical properties.
AB - We propose a stochastic multiscale method to quantify the correlated key-input parameters influencing the mechanical properties of polymer nanocomposites (PNCs). The variations of parameters at nano-, micro-, meso- and macro-scales are connected by a hierarchical multiscale approach. The first-order and total-effect sensitivity indices are determined first. The input parameters include the single-walled carbon nanotube (SWNT) length, the SWNT waviness, the agglomeration and volume fraction of SWNTs. Stochastic methods consistently predict that the key parameters for the Young's modulus of the composite are the volume fraction followed by the averaged longitudinal modulus of equivalent fiber (EF), the SWNT length, and the averaged transverse modulus of the EF, respectively. The averaged longitudinal modulus of the EF is estimated to be the most important parameter with respect to the Poisson's ratio followed by the volume fraction, the SWNT length, and the averaged transverse modulus of the EF, respectively. On the other hand, the agglomeration parameters have insignificant effect on both Young's modulus and Poisson's ratio compared to other parameters. The sensitivity analysis (SA) also reveals the correlation between the input parameters and its effect on the mechanical properties.
KW - A. Polymer-matrix composites (PMCs)
KW - B. Mechanical properties
KW - C. Computational modeling
KW - C. Micro-mechanics
KW - Multiscale modeling
UR - http://www.scopus.com/inward/record.url?scp=84908023015&partnerID=8YFLogxK
U2 - 10.1016/j.compositesb.2014.09.008
DO - 10.1016/j.compositesb.2014.09.008
M3 - Article
AN - SCOPUS:84908023015
VL - 68
SP - 446
EP - 464
JO - Composites Part B: Engineering
JF - Composites Part B: Engineering
SN - 1359-8368
ER -