Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 100125 |
Fachzeitschrift | Materials Today Nano |
Jahrgang | 15 |
Frühes Online-Datum | 24 Mai 2021 |
Publikationsstatus | Veröffentlicht - Aug. 2021 |
Abstract
Beryllium polynitrides, (BeN4) is a novel layered material, which has been most recently fabricated under high pressure (Phys. Rev. Lett. 126 (2021), 175501). As a new class of two-dimensional (2D) materials, in this work, we conduct first-principles calculations to examine the stability and explore the electronic nature of MN4 (M = Be, Mg, Ir, Rh, Ni, Cu, Au, Pd, and Pt) monolayers. Acquired results confirm the dynamical and thermal stability of BeN4, MgN4, IrN4, PtN4, and RhN4 monolayers. Interestingly, BeN4 and MgN4 monolayers are found to show anisotropic Dirac cones in their electronic structure. Although PtN4 monolayer is predicted to be a narrow bandgap semiconductor, IrN4 and RhN4 monolayers are found to be metallic systems. We also elaborately explore the effects of the number of atomic layers on the electronic features of BeN4 nanosheets, which reveal highly appealing physics. Our results highlight that BeN4 nanosheet yield ultrahigh elastic modulus and mechanical strength, outperforming all other carbon-free 2D materials. Notably, RhN4 nanosheet is predicted to yield high capacities of 562, 450, and 900 mAh/g for Li, Na, and Ca ions storages, respectively. This study provides a comprehensive understanding of the intrinsic properties of MN4 nanosheets and highlights their outstanding physics.
ASJC Scopus Sachgebiete
- Werkstoffwissenschaften (insg.)
- Elektronische, optische und magnetische Materialien
- Werkstoffwissenschaften (insg.)
- Biomaterialien
- Physik und Astronomie (insg.)
- Physik der kondensierten Materie
- Werkstoffwissenschaften (insg.)
- Werkstoffchemie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Materials Today Nano, Jahrgang 15, 100125, 08.2021.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Ultrahigh stiffness and anisotropic Dirac cones in BeN4 and MgN4 monolayers
T2 - a first-principles study
AU - Mortazavi, B.
AU - Shojaei, F.
AU - Zhuang, X.
N1 - Funding Information: B.M. and X.Z. appreciate the funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453). F.S. thanks the Persian Gulf University Research Council, Iran, for support of this study. B.M is greatly thankful to the VEGAS cluster at Bauhaus University of Weimar for providing the computational resources.
PY - 2021/8
Y1 - 2021/8
N2 - Beryllium polynitrides, (BeN4) is a novel layered material, which has been most recently fabricated under high pressure (Phys. Rev. Lett. 126 (2021), 175501). As a new class of two-dimensional (2D) materials, in this work, we conduct first-principles calculations to examine the stability and explore the electronic nature of MN4 (M = Be, Mg, Ir, Rh, Ni, Cu, Au, Pd, and Pt) monolayers. Acquired results confirm the dynamical and thermal stability of BeN4, MgN4, IrN4, PtN4, and RhN4 monolayers. Interestingly, BeN4 and MgN4 monolayers are found to show anisotropic Dirac cones in their electronic structure. Although PtN4 monolayer is predicted to be a narrow bandgap semiconductor, IrN4 and RhN4 monolayers are found to be metallic systems. We also elaborately explore the effects of the number of atomic layers on the electronic features of BeN4 nanosheets, which reveal highly appealing physics. Our results highlight that BeN4 nanosheet yield ultrahigh elastic modulus and mechanical strength, outperforming all other carbon-free 2D materials. Notably, RhN4 nanosheet is predicted to yield high capacities of 562, 450, and 900 mAh/g for Li, Na, and Ca ions storages, respectively. This study provides a comprehensive understanding of the intrinsic properties of MN4 nanosheets and highlights their outstanding physics.
AB - Beryllium polynitrides, (BeN4) is a novel layered material, which has been most recently fabricated under high pressure (Phys. Rev. Lett. 126 (2021), 175501). As a new class of two-dimensional (2D) materials, in this work, we conduct first-principles calculations to examine the stability and explore the electronic nature of MN4 (M = Be, Mg, Ir, Rh, Ni, Cu, Au, Pd, and Pt) monolayers. Acquired results confirm the dynamical and thermal stability of BeN4, MgN4, IrN4, PtN4, and RhN4 monolayers. Interestingly, BeN4 and MgN4 monolayers are found to show anisotropic Dirac cones in their electronic structure. Although PtN4 monolayer is predicted to be a narrow bandgap semiconductor, IrN4 and RhN4 monolayers are found to be metallic systems. We also elaborately explore the effects of the number of atomic layers on the electronic features of BeN4 nanosheets, which reveal highly appealing physics. Our results highlight that BeN4 nanosheet yield ultrahigh elastic modulus and mechanical strength, outperforming all other carbon-free 2D materials. Notably, RhN4 nanosheet is predicted to yield high capacities of 562, 450, and 900 mAh/g for Li, Na, and Ca ions storages, respectively. This study provides a comprehensive understanding of the intrinsic properties of MN4 nanosheets and highlights their outstanding physics.
KW - 2D materials
KW - BeN
KW - Dirac cone
KW - Mechanical
KW - Metal polynitrides
UR - http://www.scopus.com/inward/record.url?scp=85109556084&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2105.09733
DO - 10.48550/arXiv.2105.09733
M3 - Article
AN - SCOPUS:85109556084
VL - 15
JO - Materials Today Nano
JF - Materials Today Nano
M1 - 100125
ER -