Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 1317 |
Fachzeitschrift | Nature Communications |
Jahrgang | 12 |
Ausgabenummer | 1 |
Frühes Online-Datum | 26 Feb. 2021 |
Publikationsstatus | Veröffentlicht - Dez. 2021 |
Abstract
Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation.
ASJC Scopus Sachgebiete
- Chemie (insg.)
- Allgemeine Chemie
- Biochemie, Genetik und Molekularbiologie (insg.)
- Allgemeine Biochemie, Genetik und Molekularbiologie
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Nature Communications, Jahrgang 12, Nr. 1, 1317, 12.2021.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Ultracold atom interferometry in space
AU - Lachmann, Maike D.
AU - Ahlers, Holger
AU - Becker, Dennis
AU - Dinkelaker, Aline N.
AU - Grosse, Jens
AU - Hellmig, Ortwin
AU - Müntinga, Hauke
AU - Schkolnik, Vladimir
AU - Seidel, Stephan T.
AU - Wendrich, Thijs
AU - Wenzlawski, André
AU - Carrick, Benjamin
AU - Gaaloul, Naceur
AU - Lüdtke, Daniel
AU - Braxmaier, Claus
AU - Ertmer, Wolfgang
AU - Krutzik, Markus
AU - Lämmerzahl, Claus
AU - Peters, Achim
AU - Schleich, Wolfgang P.
AU - Sengstock, Klaus
AU - Wicht, Andreas
AU - Windpassinger, Patrick
AU - Rasel, Ernst M.
N1 - Funding Information: We thank all members of the QUANTUS-collaboration for their support and acknowledge fruitful discussions with M. Cornelius, P. Stromberger and W. Herr. This work is supported by the DLR Space Administration with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) under grant numbers DLR 50WM1131-1137, 50WM0940, 50WM1240, 50WM1556, 50WM1641, 50WM1861, 50WM1956, 50WP1431-1435 and 50WM2060, and is funded by the Deutsche For-schungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2123 QuantumFrontiers—390837967. W.P.S. thanks Texas A&M University for a Faculty Fellowship at the Hagler Institute for Advanced Study at Texas A&M University and Texas A&M AgriLife for support of this work. The research of the IQST is financed partially by the Ministry of Science, Research and Arts Baden-Württemberg. H.A. acknowledges financial support from “Niedersächsisches Vorab” through “För-derung von Wissenschaft und Technik in Forschung und Lehre” for the initial funding of research in the new DLR-SI Institute. N.G. acknowledges funding from “Nie-dersächsisches Vorab” through the Quantum-and Nano-Metrology (QUANOMET) initiative within the project QT3. We thank ESRANGE Kiruna and DLR MORABA Oberpfaffenhofen for assistance during the test and launch campaign.
PY - 2021/12
Y1 - 2021/12
N2 - Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation.
AB - Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation.
UR - http://www.scopus.com/inward/record.url?scp=85101909581&partnerID=8YFLogxK
U2 - 10.1038/s41467-021-21628-z
DO - 10.1038/s41467-021-21628-z
M3 - Article
C2 - 33637769
AN - SCOPUS:85101909581
VL - 12
JO - Nature Communications
JF - Nature Communications
SN - 2041-1723
IS - 1
M1 - 1317
ER -