Ultracold atom interferometry in space

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Maike D. Lachmann
  • Holger Ahlers
  • Dennis Becker
  • Aline N. Dinkelaker
  • Jens Grosse
  • Ortwin Hellmig
  • Hauke Müntinga
  • Vladimir Schkolnik
  • Stephan T. Seidel
  • Thijs Wendrich
  • André Wenzlawski
  • Benjamin Carrick
  • Naceur Gaaloul
  • Daniel Lüdtke
  • Claus Braxmaier
  • Wolfgang Ertmer
  • Markus Krutzik
  • Claus Lämmerzahl
  • Achim Peters
  • Wolfgang P. Schleich
  • Klaus Sengstock
  • Andreas Wicht
  • Patrick Windpassinger
  • Ernst M. Rasel

Externe Organisationen

  • Humboldt-Universität zu Berlin (HU Berlin)
  • Universität Potsdam
  • Universität Bremen
  • Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)
  • Universität Hamburg
  • Johannes Gutenberg-Universität Mainz
  • Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST)
  • Texas A and M University
  • Ferdinand-Braun-Institut gGmbH, Leibniz-Institut für Höchstfrequenztechnik (FBH)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer1317
FachzeitschriftNature Communications
Jahrgang12
Ausgabenummer1
Frühes Online-Datum26 Feb. 2021
PublikationsstatusVeröffentlicht - Dez. 2021

Abstract

Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation.

ASJC Scopus Sachgebiete

Zitieren

Ultracold atom interferometry in space. / Lachmann, Maike D.; Ahlers, Holger; Becker, Dennis et al.
in: Nature Communications, Jahrgang 12, Nr. 1, 1317, 12.2021.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Lachmann, MD, Ahlers, H, Becker, D, Dinkelaker, AN, Grosse, J, Hellmig, O, Müntinga, H, Schkolnik, V, Seidel, ST, Wendrich, T, Wenzlawski, A, Carrick, B, Gaaloul, N, Lüdtke, D, Braxmaier, C, Ertmer, W, Krutzik, M, Lämmerzahl, C, Peters, A, Schleich, WP, Sengstock, K, Wicht, A, Windpassinger, P & Rasel, EM 2021, 'Ultracold atom interferometry in space', Nature Communications, Jg. 12, Nr. 1, 1317. https://doi.org/10.1038/s41467-021-21628-z
Lachmann, M. D., Ahlers, H., Becker, D., Dinkelaker, A. N., Grosse, J., Hellmig, O., Müntinga, H., Schkolnik, V., Seidel, S. T., Wendrich, T., Wenzlawski, A., Carrick, B., Gaaloul, N., Lüdtke, D., Braxmaier, C., Ertmer, W., Krutzik, M., Lämmerzahl, C., Peters, A., ... Rasel, E. M. (2021). Ultracold atom interferometry in space. Nature Communications, 12(1), Artikel 1317. https://doi.org/10.1038/s41467-021-21628-z
Lachmann MD, Ahlers H, Becker D, Dinkelaker AN, Grosse J, Hellmig O et al. Ultracold atom interferometry in space. Nature Communications. 2021 Dez;12(1):1317. Epub 2021 Feb 26. doi: 10.1038/s41467-021-21628-z
Lachmann, Maike D. ; Ahlers, Holger ; Becker, Dennis et al. / Ultracold atom interferometry in space. in: Nature Communications. 2021 ; Jahrgang 12, Nr. 1.
Download
@article{0543c4467a7c4593a32544c4dd6bc232,
title = "Ultracold atom interferometry in space",
abstract = "Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation.",
author = "Lachmann, {Maike D.} and Holger Ahlers and Dennis Becker and Dinkelaker, {Aline N.} and Jens Grosse and Ortwin Hellmig and Hauke M{\"u}ntinga and Vladimir Schkolnik and Seidel, {Stephan T.} and Thijs Wendrich and Andr{\'e} Wenzlawski and Benjamin Carrick and Naceur Gaaloul and Daniel L{\"u}dtke and Claus Braxmaier and Wolfgang Ertmer and Markus Krutzik and Claus L{\"a}mmerzahl and Achim Peters and Schleich, {Wolfgang P.} and Klaus Sengstock and Andreas Wicht and Patrick Windpassinger and Rasel, {Ernst M.}",
note = "Funding Information: We thank all members of the QUANTUS-collaboration for their support and acknowledge fruitful discussions with M. Cornelius, P. Stromberger and W. Herr. This work is supported by the DLR Space Administration with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) under grant numbers DLR 50WM1131-1137, 50WM0940, 50WM1240, 50WM1556, 50WM1641, 50WM1861, 50WM1956, 50WP1431-1435 and 50WM2060, and is funded by the Deutsche For-schungsgemeinschaft (DFG, German Research Foundation) under Germany{\textquoteright}s Excellence Strategy—EXC-2123 QuantumFrontiers—390837967. W.P.S. thanks Texas A&M University for a Faculty Fellowship at the Hagler Institute for Advanced Study at Texas A&M University and Texas A&M AgriLife for support of this work. The research of the IQST is financed partially by the Ministry of Science, Research and Arts Baden-W{\"u}rttemberg. H.A. acknowledges financial support from “Nieders{\"a}chsisches Vorab” through “F{\"o}r-derung von Wissenschaft und Technik in Forschung und Lehre” for the initial funding of research in the new DLR-SI Institute. N.G. acknowledges funding from “Nie-ders{\"a}chsisches Vorab” through the Quantum-and Nano-Metrology (QUANOMET) initiative within the project QT3. We thank ESRANGE Kiruna and DLR MORABA Oberpfaffenhofen for assistance during the test and launch campaign.",
year = "2021",
month = dec,
doi = "10.1038/s41467-021-21628-z",
language = "English",
volume = "12",
journal = "Nature Communications",
issn = "2041-1723",
publisher = "Nature Publishing Group",
number = "1",

}

Download

TY - JOUR

T1 - Ultracold atom interferometry in space

AU - Lachmann, Maike D.

AU - Ahlers, Holger

AU - Becker, Dennis

AU - Dinkelaker, Aline N.

AU - Grosse, Jens

AU - Hellmig, Ortwin

AU - Müntinga, Hauke

AU - Schkolnik, Vladimir

AU - Seidel, Stephan T.

AU - Wendrich, Thijs

AU - Wenzlawski, André

AU - Carrick, Benjamin

AU - Gaaloul, Naceur

AU - Lüdtke, Daniel

AU - Braxmaier, Claus

AU - Ertmer, Wolfgang

AU - Krutzik, Markus

AU - Lämmerzahl, Claus

AU - Peters, Achim

AU - Schleich, Wolfgang P.

AU - Sengstock, Klaus

AU - Wicht, Andreas

AU - Windpassinger, Patrick

AU - Rasel, Ernst M.

N1 - Funding Information: We thank all members of the QUANTUS-collaboration for their support and acknowledge fruitful discussions with M. Cornelius, P. Stromberger and W. Herr. This work is supported by the DLR Space Administration with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) under grant numbers DLR 50WM1131-1137, 50WM0940, 50WM1240, 50WM1556, 50WM1641, 50WM1861, 50WM1956, 50WP1431-1435 and 50WM2060, and is funded by the Deutsche For-schungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—EXC-2123 QuantumFrontiers—390837967. W.P.S. thanks Texas A&M University for a Faculty Fellowship at the Hagler Institute for Advanced Study at Texas A&M University and Texas A&M AgriLife for support of this work. The research of the IQST is financed partially by the Ministry of Science, Research and Arts Baden-Württemberg. H.A. acknowledges financial support from “Niedersächsisches Vorab” through “För-derung von Wissenschaft und Technik in Forschung und Lehre” for the initial funding of research in the new DLR-SI Institute. N.G. acknowledges funding from “Nie-dersächsisches Vorab” through the Quantum-and Nano-Metrology (QUANOMET) initiative within the project QT3. We thank ESRANGE Kiruna and DLR MORABA Oberpfaffenhofen for assistance during the test and launch campaign.

PY - 2021/12

Y1 - 2021/12

N2 - Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation.

AB - Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket. The prevailing microgravity played a crucial role in the observation of these interferences which not only reveal the spatial coherence of the condensates but also allow us to measure differential forces. Our work marks the beginning of matter-wave interferometry in space with future applications in fundamental physics, navigation and earth observation.

UR - http://www.scopus.com/inward/record.url?scp=85101909581&partnerID=8YFLogxK

U2 - 10.1038/s41467-021-21628-z

DO - 10.1038/s41467-021-21628-z

M3 - Article

C2 - 33637769

AN - SCOPUS:85101909581

VL - 12

JO - Nature Communications

JF - Nature Communications

SN - 2041-1723

IS - 1

M1 - 1317

ER -