Überwachung von Werkzeugverschleiß Maschinenübergreifende Nutzung von Prozessdaten mithilfe von Maschinellem Lernen

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Berend Denkena
  • Heinrich Klemme
  • Tobias H. Stiehl
Forschungs-netzwerk anzeigen

Details

Titel in ÜbersetzungTool Wear Monitoring Using Process Data of Multiple Machine Tools by Means of Machine Learning
OriginalspracheDeutsch
Seiten (von - bis)298-301
Seitenumfang4
FachzeitschriftZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb
Jahrgang118
Ausgabenummer5
PublikationsstatusVeröffentlicht - 1 Mai 2023

Abstract

Monitoring the actual wear of a tool enables a tool to be used to the end of its life, despite tool life variations. However, such monitoring currently requires an extensive teach-in on the monitored machine. This article describes an approach for tool wear monitoring that omits the machine-specific teach-in phase. Instead, the teach-in is based on data that was previously recorded on other machines. Further, a demonstrator for monitoring flank wear width during milling is presented.

Schlagwörter

    Federated Learning, Machine Tools, Milling, Monitoring, Tool Wear, Transfer Learning

ASJC Scopus Sachgebiete

Zitieren

Überwachung von Werkzeugverschleiß Maschinenübergreifende Nutzung von Prozessdaten mithilfe von Maschinellem Lernen. / Denkena, Berend; Klemme, Heinrich; Stiehl, Tobias H.
in: ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, Jahrgang 118, Nr. 5, 01.05.2023, S. 298-301.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Denkena, B, Klemme, H & Stiehl, TH 2023, 'Überwachung von Werkzeugverschleiß Maschinenübergreifende Nutzung von Prozessdaten mithilfe von Maschinellem Lernen', ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, Jg. 118, Nr. 5, S. 298-301. https://doi.org/10.1515/zwf-2023-1059
Denkena, B., Klemme, H., & Stiehl, T. H. (2023). Überwachung von Werkzeugverschleiß Maschinenübergreifende Nutzung von Prozessdaten mithilfe von Maschinellem Lernen. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 118(5), 298-301. https://doi.org/10.1515/zwf-2023-1059
Denkena B, Klemme H, Stiehl TH. Überwachung von Werkzeugverschleiß Maschinenübergreifende Nutzung von Prozessdaten mithilfe von Maschinellem Lernen. ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb. 2023 Mai 1;118(5):298-301. doi: 10.1515/zwf-2023-1059
Denkena, Berend ; Klemme, Heinrich ; Stiehl, Tobias H. / Überwachung von Werkzeugverschleiß Maschinenübergreifende Nutzung von Prozessdaten mithilfe von Maschinellem Lernen. in: ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb. 2023 ; Jahrgang 118, Nr. 5. S. 298-301.
Download
@article{d6bafb7d20614865b6d8eef8327ea7bb,
title = "{\"U}berwachung von Werkzeugverschlei{\ss} Maschinen{\"u}bergreifende Nutzung von Prozessdaten mithilfe von Maschinellem Lernen",
abstract = "Monitoring the actual wear of a tool enables a tool to be used to the end of its life, despite tool life variations. However, such monitoring currently requires an extensive teach-in on the monitored machine. This article describes an approach for tool wear monitoring that omits the machine-specific teach-in phase. Instead, the teach-in is based on data that was previously recorded on other machines. Further, a demonstrator for monitoring flank wear width during milling is presented.",
keywords = "Federated Learning, Machine Tools, Milling, Monitoring, Tool Wear, Transfer Learning",
author = "Berend Denkena and Heinrich Klemme and Stiehl, {Tobias H.}",
year = "2023",
month = may,
day = "1",
doi = "10.1515/zwf-2023-1059",
language = "Deutsch",
volume = "118",
pages = "298--301",
number = "5",

}

Download

TY - JOUR

T1 - Überwachung von Werkzeugverschleiß Maschinenübergreifende Nutzung von Prozessdaten mithilfe von Maschinellem Lernen

AU - Denkena, Berend

AU - Klemme, Heinrich

AU - Stiehl, Tobias H.

PY - 2023/5/1

Y1 - 2023/5/1

N2 - Monitoring the actual wear of a tool enables a tool to be used to the end of its life, despite tool life variations. However, such monitoring currently requires an extensive teach-in on the monitored machine. This article describes an approach for tool wear monitoring that omits the machine-specific teach-in phase. Instead, the teach-in is based on data that was previously recorded on other machines. Further, a demonstrator for monitoring flank wear width during milling is presented.

AB - Monitoring the actual wear of a tool enables a tool to be used to the end of its life, despite tool life variations. However, such monitoring currently requires an extensive teach-in on the monitored machine. This article describes an approach for tool wear monitoring that omits the machine-specific teach-in phase. Instead, the teach-in is based on data that was previously recorded on other machines. Further, a demonstrator for monitoring flank wear width during milling is presented.

KW - Federated Learning

KW - Machine Tools

KW - Milling

KW - Monitoring

KW - Tool Wear

KW - Transfer Learning

UR - http://www.scopus.com/inward/record.url?scp=85159784737&partnerID=8YFLogxK

U2 - 10.1515/zwf-2023-1059

DO - 10.1515/zwf-2023-1059

M3 - Artikel

AN - SCOPUS:85159784737

VL - 118

SP - 298

EP - 301

JO - ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb

JF - ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb

SN - 0947-0085

IS - 5

ER -