Details
Titel in Übersetzung | Tool Wear Monitoring Using Process Data of Multiple Machine Tools by Means of Machine Learning |
---|---|
Originalsprache | Deutsch |
Seiten (von - bis) | 298-301 |
Seitenumfang | 4 |
Fachzeitschrift | ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb |
Jahrgang | 118 |
Ausgabenummer | 5 |
Publikationsstatus | Veröffentlicht - 1 Mai 2023 |
Abstract
Monitoring the actual wear of a tool enables a tool to be used to the end of its life, despite tool life variations. However, such monitoring currently requires an extensive teach-in on the monitored machine. This article describes an approach for tool wear monitoring that omits the machine-specific teach-in phase. Instead, the teach-in is based on data that was previously recorded on other machines. Further, a demonstrator for monitoring flank wear width during milling is presented.
Schlagwörter
- Federated Learning, Machine Tools, Milling, Monitoring, Tool Wear, Transfer Learning
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Allgemeiner Maschinenbau
- Betriebswirtschaft, Management und Rechnungswesen (insg.)
- Strategie und Management
- Entscheidungswissenschaften (insg.)
- Managementlehre und Operations Resarch
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, Jahrgang 118, Nr. 5, 01.05.2023, S. 298-301.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Überwachung von Werkzeugverschleiß Maschinenübergreifende Nutzung von Prozessdaten mithilfe von Maschinellem Lernen
AU - Denkena, Berend
AU - Klemme, Heinrich
AU - Stiehl, Tobias H.
PY - 2023/5/1
Y1 - 2023/5/1
N2 - Monitoring the actual wear of a tool enables a tool to be used to the end of its life, despite tool life variations. However, such monitoring currently requires an extensive teach-in on the monitored machine. This article describes an approach for tool wear monitoring that omits the machine-specific teach-in phase. Instead, the teach-in is based on data that was previously recorded on other machines. Further, a demonstrator for monitoring flank wear width during milling is presented.
AB - Monitoring the actual wear of a tool enables a tool to be used to the end of its life, despite tool life variations. However, such monitoring currently requires an extensive teach-in on the monitored machine. This article describes an approach for tool wear monitoring that omits the machine-specific teach-in phase. Instead, the teach-in is based on data that was previously recorded on other machines. Further, a demonstrator for monitoring flank wear width during milling is presented.
KW - Federated Learning
KW - Machine Tools
KW - Milling
KW - Monitoring
KW - Tool Wear
KW - Transfer Learning
UR - http://www.scopus.com/inward/record.url?scp=85159784737&partnerID=8YFLogxK
U2 - 10.1515/zwf-2023-1059
DO - 10.1515/zwf-2023-1059
M3 - Artikel
AN - SCOPUS:85159784737
VL - 118
SP - 298
EP - 301
JO - ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb
JF - ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb
SN - 0947-0085
IS - 5
ER -