Two-Level Error Estimation for the Integral Fractional Laplacian

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Markus Faustmann
  • Ernst P. Stephan
  • David Wörgötter

Organisationseinheiten

Externe Organisationen

  • Technische Universität Wien (TUW)
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)603-621
Seitenumfang19
FachzeitschriftComputational Methods in Applied Mathematics
Jahrgang23
Ausgabenummer3
Frühes Online-Datum14 Feb. 2023
PublikationsstatusVeröffentlicht - 1 Juli 2023

Abstract

For the singular integral definition of the fractional Laplacian, we consider an adaptive finite element method steered by two-level error indicators. For this algorithm, we show linear convergence in two and three space dimensions as well as convergence of the algorithm with optimal algebraic rates in 2D, when newest vertex bisection is employed for mesh refinement. A key step hereby is an equivalence of the nodal and Scott-Zhang interpolation operators in certain weighted L2-norms.

ASJC Scopus Sachgebiete

Zitieren

Two-Level Error Estimation for the Integral Fractional Laplacian. / Faustmann, Markus; Stephan, Ernst P.; Wörgötter, David.
in: Computational Methods in Applied Mathematics, Jahrgang 23, Nr. 3, 01.07.2023, S. 603-621.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Faustmann M, Stephan EP, Wörgötter D. Two-Level Error Estimation for the Integral Fractional Laplacian. Computational Methods in Applied Mathematics. 2023 Jul 1;23(3):603-621. Epub 2023 Feb 14. doi: 10.48550/arXiv.2209.13366, 10.1515/cmam-2022-0195
Faustmann, Markus ; Stephan, Ernst P. ; Wörgötter, David. / Two-Level Error Estimation for the Integral Fractional Laplacian. in: Computational Methods in Applied Mathematics. 2023 ; Jahrgang 23, Nr. 3. S. 603-621.
Download
@article{0df34bb426654e2883ead53998a2ba29,
title = "Two-Level Error Estimation for the Integral Fractional Laplacian",
abstract = "For the singular integral definition of the fractional Laplacian, we consider an adaptive finite element method steered by two-level error indicators. For this algorithm, we show linear convergence in two and three space dimensions as well as convergence of the algorithm with optimal algebraic rates in 2D, when newest vertex bisection is employed for mesh refinement. A key step hereby is an equivalence of the nodal and Scott-Zhang interpolation operators in certain weighted L2-norms.",
keywords = "Adaptive Methods, Finite Element Methods, Fractional Laplacian, Optimal Convergence, Two-Level Error Estimation",
author = "Markus Faustmann and Stephan, {Ernst P.} and David W{\"o}rg{\"o}tter",
year = "2023",
month = jul,
day = "1",
doi = "10.48550/arXiv.2209.13366",
language = "English",
volume = "23",
pages = "603--621",
journal = "Computational Methods in Applied Mathematics",
issn = "1609-4840",
publisher = "Walter de Gruyter GmbH",
number = "3",

}

Download

TY - JOUR

T1 - Two-Level Error Estimation for the Integral Fractional Laplacian

AU - Faustmann, Markus

AU - Stephan, Ernst P.

AU - Wörgötter, David

PY - 2023/7/1

Y1 - 2023/7/1

N2 - For the singular integral definition of the fractional Laplacian, we consider an adaptive finite element method steered by two-level error indicators. For this algorithm, we show linear convergence in two and three space dimensions as well as convergence of the algorithm with optimal algebraic rates in 2D, when newest vertex bisection is employed for mesh refinement. A key step hereby is an equivalence of the nodal and Scott-Zhang interpolation operators in certain weighted L2-norms.

AB - For the singular integral definition of the fractional Laplacian, we consider an adaptive finite element method steered by two-level error indicators. For this algorithm, we show linear convergence in two and three space dimensions as well as convergence of the algorithm with optimal algebraic rates in 2D, when newest vertex bisection is employed for mesh refinement. A key step hereby is an equivalence of the nodal and Scott-Zhang interpolation operators in certain weighted L2-norms.

KW - Adaptive Methods

KW - Finite Element Methods

KW - Fractional Laplacian

KW - Optimal Convergence

KW - Two-Level Error Estimation

UR - http://www.scopus.com/inward/record.url?scp=85148670449&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2209.13366

DO - 10.48550/arXiv.2209.13366

M3 - Article

AN - SCOPUS:85148670449

VL - 23

SP - 603

EP - 621

JO - Computational Methods in Applied Mathematics

JF - Computational Methods in Applied Mathematics

SN - 1609-4840

IS - 3

ER -