Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 249-271 |
Seitenumfang | 23 |
Fachzeitschrift | Annali di Matematica Pura ed Applicata |
Jahrgang | 195 |
Ausgabenummer | 1 |
Publikationsstatus | Veröffentlicht - 26 Okt. 2014 |
Abstract
In this paper, we derive a two-component system of nonlinear equations which models two-dimensional shallow water waves with constant vorticity. Then, we prove well-posedness of this equation using a geometrical framework which allows us to recast this equation as a geodesic flow on an infinite-dimensional manifold. Finally, we provide a criterion for global existence.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Annali di Matematica Pura ed Applicata, Jahrgang 195, Nr. 1, 26.10.2014, S. 249-271.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Two-component equations modelling water waves with constant vorticity
AU - Escher, Joachim
AU - Henry, David
AU - Kolev, Boris
AU - Lyons, Tony
PY - 2014/10/26
Y1 - 2014/10/26
N2 - In this paper, we derive a two-component system of nonlinear equations which models two-dimensional shallow water waves with constant vorticity. Then, we prove well-posedness of this equation using a geometrical framework which allows us to recast this equation as a geodesic flow on an infinite-dimensional manifold. Finally, we provide a criterion for global existence.
AB - In this paper, we derive a two-component system of nonlinear equations which models two-dimensional shallow water waves with constant vorticity. Then, we prove well-posedness of this equation using a geometrical framework which allows us to recast this equation as a geodesic flow on an infinite-dimensional manifold. Finally, we provide a criterion for global existence.
KW - Diffeomorphism group
KW - Euler equation
KW - Model equations
KW - Vorticity
KW - Water waves
UR - http://www.scopus.com/inward/record.url?scp=84956667414&partnerID=8YFLogxK
U2 - 10.1007/s10231-014-0461-z
DO - 10.1007/s10231-014-0461-z
M3 - Article
AN - SCOPUS:84956667414
VL - 195
SP - 249
EP - 271
JO - Annali di Matematica Pura ed Applicata
JF - Annali di Matematica Pura ed Applicata
SN - 0373-3114
IS - 1
ER -