Two Cycle Class Maps on Torsion Cycles

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Theodosis Alexandrou

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)11625–11641
Seitenumfang17
FachzeitschriftInternational Mathematics Research Notices
Jahrgang2024
Ausgabenummer16
Frühes Online-Datum19 Juni 2024
PublikationsstatusVeröffentlicht - Aug. 2024

Abstract

We compare two cycle class maps on torsion cycles and show that they agree up to a minus sign. The first one goes back to Bloch (1979), with recent generalizations to non-closed fields. The second is the \'etale motivic cycle class map \(\alpha^{i}_{X}\colon \text{CH}^{i}(X)_{\mathbb{Z}_{\ell}}\to H^{2i}_{L}(X,\mathbb{Z}_{\ell}(i))\) restricted to torsion cycles.

ASJC Scopus Sachgebiete

Zitieren

Two Cycle Class Maps on Torsion Cycles. / Alexandrou, Theodosis.
in: International Mathematics Research Notices, Jahrgang 2024, Nr. 16, 08.2024, S. 11625–11641.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Alexandrou T. Two Cycle Class Maps on Torsion Cycles. International Mathematics Research Notices. 2024 Aug;2024(16):11625–11641. Epub 2024 Jun 19. doi: 10.48550/arXiv.2401.11014, 10.1093/imrn/rnae138
Alexandrou, Theodosis. / Two Cycle Class Maps on Torsion Cycles. in: International Mathematics Research Notices. 2024 ; Jahrgang 2024, Nr. 16. S. 11625–11641.
Download
@article{a3a94decb3c04581b111521b829437ae,
title = "Two Cycle Class Maps on Torsion Cycles",
abstract = " We compare two cycle class maps on torsion cycles and show that they agree up to a minus sign. The first one goes back to Bloch (1979), with recent generalizations to non-closed fields. The second is the \'etale motivic cycle class map \(\alpha^{i}_{X}\colon \text{CH}^{i}(X)_{\mathbb{Z}_{\ell}}\to H^{2i}_{L}(X,\mathbb{Z}_{\ell}(i))\) restricted to torsion cycles. ",
keywords = "math.AG, 14C15, 14C25 (Primary)",
author = "Theodosis Alexandrou",
note = "Publisher Copyright: {\textcopyright} 2024 The Author(s). Published by Oxford University Press. All rights reserved.",
year = "2024",
month = aug,
doi = "10.48550/arXiv.2401.11014",
language = "English",
volume = "2024",
pages = "11625–11641",
journal = "International Mathematics Research Notices",
issn = "1073-7928",
publisher = "Oxford University Press",
number = "16",

}

Download

TY - JOUR

T1 - Two Cycle Class Maps on Torsion Cycles

AU - Alexandrou, Theodosis

N1 - Publisher Copyright: © 2024 The Author(s). Published by Oxford University Press. All rights reserved.

PY - 2024/8

Y1 - 2024/8

N2 - We compare two cycle class maps on torsion cycles and show that they agree up to a minus sign. The first one goes back to Bloch (1979), with recent generalizations to non-closed fields. The second is the \'etale motivic cycle class map \(\alpha^{i}_{X}\colon \text{CH}^{i}(X)_{\mathbb{Z}_{\ell}}\to H^{2i}_{L}(X,\mathbb{Z}_{\ell}(i))\) restricted to torsion cycles.

AB - We compare two cycle class maps on torsion cycles and show that they agree up to a minus sign. The first one goes back to Bloch (1979), with recent generalizations to non-closed fields. The second is the \'etale motivic cycle class map \(\alpha^{i}_{X}\colon \text{CH}^{i}(X)_{\mathbb{Z}_{\ell}}\to H^{2i}_{L}(X,\mathbb{Z}_{\ell}(i))\) restricted to torsion cycles.

KW - math.AG

KW - 14C15, 14C25 (Primary)

UR - http://www.scopus.com/inward/record.url?scp=85202069459&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2401.11014

DO - 10.48550/arXiv.2401.11014

M3 - Article

VL - 2024

SP - 11625

EP - 11641

JO - International Mathematics Research Notices

JF - International Mathematics Research Notices

SN - 1073-7928

IS - 16

ER -