Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 11625–11641 |
Seitenumfang | 17 |
Fachzeitschrift | International Mathematics Research Notices |
Jahrgang | 2024 |
Ausgabenummer | 16 |
Frühes Online-Datum | 19 Juni 2024 |
Publikationsstatus | Veröffentlicht - Aug. 2024 |
Abstract
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Allgemeine Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: International Mathematics Research Notices, Jahrgang 2024, Nr. 16, 08.2024, S. 11625–11641.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Two Cycle Class Maps on Torsion Cycles
AU - Alexandrou, Theodosis
N1 - Publisher Copyright: © 2024 The Author(s). Published by Oxford University Press. All rights reserved.
PY - 2024/8
Y1 - 2024/8
N2 - We compare two cycle class maps on torsion cycles and show that they agree up to a minus sign. The first one goes back to Bloch (1979), with recent generalizations to non-closed fields. The second is the \'etale motivic cycle class map \(\alpha^{i}_{X}\colon \text{CH}^{i}(X)_{\mathbb{Z}_{\ell}}\to H^{2i}_{L}(X,\mathbb{Z}_{\ell}(i))\) restricted to torsion cycles.
AB - We compare two cycle class maps on torsion cycles and show that they agree up to a minus sign. The first one goes back to Bloch (1979), with recent generalizations to non-closed fields. The second is the \'etale motivic cycle class map \(\alpha^{i}_{X}\colon \text{CH}^{i}(X)_{\mathbb{Z}_{\ell}}\to H^{2i}_{L}(X,\mathbb{Z}_{\ell}(i))\) restricted to torsion cycles.
KW - math.AG
KW - 14C15, 14C25 (Primary)
UR - http://www.scopus.com/inward/record.url?scp=85202069459&partnerID=8YFLogxK
U2 - 10.48550/arXiv.2401.11014
DO - 10.48550/arXiv.2401.11014
M3 - Article
VL - 2024
SP - 11625
EP - 11641
JO - International Mathematics Research Notices
JF - International Mathematics Research Notices
SN - 1073-7928
IS - 16
ER -