Two Cycle Class Maps on Torsion Cycles

Publikation: Arbeitspapier/PreprintPreprint

Autoren

  • Theodosis Alexandrou

Organisationseinheiten

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
PublikationsstatusElektronisch veröffentlicht (E-Pub) - 19 Jan. 2024

Abstract

We compare two cycle class maps on torsion cycles and show that they agree up to a minus sign. The first one goes back to Bloch (1979), with recent generalizations to non-closed fields. The second is the \'etale motivic cycle class map \(\alpha^{i}_{X}\colon \text{CH}^{i}(X)_{\mathbb{Z}_{\ell}}\to H^{2i}_{L}(X,\mathbb{Z}_{\ell}(i))\) restricted to torsion cycles.

Zitieren

Two Cycle Class Maps on Torsion Cycles. / Alexandrou, Theodosis.
2024.

Publikation: Arbeitspapier/PreprintPreprint

Alexandrou, T. (2024). Two Cycle Class Maps on Torsion Cycles. Vorabveröffentlichung online.
Alexandrou T. Two Cycle Class Maps on Torsion Cycles. 2024 Jan 19. Epub 2024 Jan 19.
Alexandrou, Theodosis. / Two Cycle Class Maps on Torsion Cycles. 2024.
Download
@techreport{a3a94decb3c04581b111521b829437ae,
title = "Two Cycle Class Maps on Torsion Cycles",
abstract = " We compare two cycle class maps on torsion cycles and show that they agree up to a minus sign. The first one goes back to Bloch (1979), with recent generalizations to non-closed fields. The second is the \'etale motivic cycle class map \(\alpha^{i}_{X}\colon \text{CH}^{i}(X)_{\mathbb{Z}_{\ell}}\to H^{2i}_{L}(X,\mathbb{Z}_{\ell}(i))\) restricted to torsion cycles. ",
keywords = "math.AG, 14C15, 14C25 (Primary)",
author = "Theodosis Alexandrou",
note = "17 pages",
year = "2024",
month = jan,
day = "19",
language = "English",
type = "WorkingPaper",

}

Download

TY - UNPB

T1 - Two Cycle Class Maps on Torsion Cycles

AU - Alexandrou, Theodosis

N1 - 17 pages

PY - 2024/1/19

Y1 - 2024/1/19

N2 - We compare two cycle class maps on torsion cycles and show that they agree up to a minus sign. The first one goes back to Bloch (1979), with recent generalizations to non-closed fields. The second is the \'etale motivic cycle class map \(\alpha^{i}_{X}\colon \text{CH}^{i}(X)_{\mathbb{Z}_{\ell}}\to H^{2i}_{L}(X,\mathbb{Z}_{\ell}(i))\) restricted to torsion cycles.

AB - We compare two cycle class maps on torsion cycles and show that they agree up to a minus sign. The first one goes back to Bloch (1979), with recent generalizations to non-closed fields. The second is the \'etale motivic cycle class map \(\alpha^{i}_{X}\colon \text{CH}^{i}(X)_{\mathbb{Z}_{\ell}}\to H^{2i}_{L}(X,\mathbb{Z}_{\ell}(i))\) restricted to torsion cycles.

KW - math.AG

KW - 14C15, 14C25 (Primary)

M3 - Preprint

BT - Two Cycle Class Maps on Torsion Cycles

ER -