Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 6113-6117 |
Seitenumfang | 5 |
Fachzeitschrift | Analytical chemistry |
Jahrgang | 77 |
Ausgabenummer | 19 |
Publikationsstatus | Veröffentlicht - 27 Aug. 2005 |
Abstract
A novelly developed tweezing-adsorptive bubble separation (ABS) method for the enrichment of metalloenzymes (laccase C and horseradish peroxidase) is introduced. The method is based on the chelation of the enzymes' active center and can also be applied for analysis. N-(2-Acetamido)iminodiacetic acid served as a chelator and was synthesized with an octyl unit to become ADA-C8. Laccase was enriched 13.3-fold (66.31% recovery) and HPOX 17.8-fold (85.34%) without a significant loss of enzymatic activity. To prove that the entire enzyme is tweezed at the active center, ABS trials were done using ADA-C8 already complexed with Cu2+ and Fe3+. As only marginal enrichment occurred (ER laccase, 0.17; ER HPOX, 0.44), no chelating effect was concluded. It was determined how the chelation toward the active center was directed by applying other chelators such as EDTA, NTA, N,N-dimethyl-aminoglycine, oxalic acid, malonic acid, adipinic acid, and tripropylamine, which are similar in structure to ADA-C8. The results concluded that the chelation is 3-fold coordinated on the type 1 copper center of laccase, whereas that of HPOX only 1-fold at Fe3+ and additionally at the cationic amino acid arginine, which is also located at the active center. Tweezing-ABS has been proven to selectively and effectively enrich metalloenzymes.
ASJC Scopus Sachgebiete
- Chemie (insg.)
- Analytische Chemie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Analytical chemistry, Jahrgang 77, Nr. 19, 27.08.2005, S. 6113-6117.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Tweezing-adsorptive bubble separation
T2 - Analytical method for the selective and high enrichment of metalloenzymes
AU - Gerken, Birte M.
AU - Wattenbach, Carsten
AU - Linke, Diana
AU - Zorn, Holger
AU - Berger, Ralf G.
AU - Parlar, Harun
PY - 2005/8/27
Y1 - 2005/8/27
N2 - A novelly developed tweezing-adsorptive bubble separation (ABS) method for the enrichment of metalloenzymes (laccase C and horseradish peroxidase) is introduced. The method is based on the chelation of the enzymes' active center and can also be applied for analysis. N-(2-Acetamido)iminodiacetic acid served as a chelator and was synthesized with an octyl unit to become ADA-C8. Laccase was enriched 13.3-fold (66.31% recovery) and HPOX 17.8-fold (85.34%) without a significant loss of enzymatic activity. To prove that the entire enzyme is tweezed at the active center, ABS trials were done using ADA-C8 already complexed with Cu2+ and Fe3+. As only marginal enrichment occurred (ER laccase, 0.17; ER HPOX, 0.44), no chelating effect was concluded. It was determined how the chelation toward the active center was directed by applying other chelators such as EDTA, NTA, N,N-dimethyl-aminoglycine, oxalic acid, malonic acid, adipinic acid, and tripropylamine, which are similar in structure to ADA-C8. The results concluded that the chelation is 3-fold coordinated on the type 1 copper center of laccase, whereas that of HPOX only 1-fold at Fe3+ and additionally at the cationic amino acid arginine, which is also located at the active center. Tweezing-ABS has been proven to selectively and effectively enrich metalloenzymes.
AB - A novelly developed tweezing-adsorptive bubble separation (ABS) method for the enrichment of metalloenzymes (laccase C and horseradish peroxidase) is introduced. The method is based on the chelation of the enzymes' active center and can also be applied for analysis. N-(2-Acetamido)iminodiacetic acid served as a chelator and was synthesized with an octyl unit to become ADA-C8. Laccase was enriched 13.3-fold (66.31% recovery) and HPOX 17.8-fold (85.34%) without a significant loss of enzymatic activity. To prove that the entire enzyme is tweezed at the active center, ABS trials were done using ADA-C8 already complexed with Cu2+ and Fe3+. As only marginal enrichment occurred (ER laccase, 0.17; ER HPOX, 0.44), no chelating effect was concluded. It was determined how the chelation toward the active center was directed by applying other chelators such as EDTA, NTA, N,N-dimethyl-aminoglycine, oxalic acid, malonic acid, adipinic acid, and tripropylamine, which are similar in structure to ADA-C8. The results concluded that the chelation is 3-fold coordinated on the type 1 copper center of laccase, whereas that of HPOX only 1-fold at Fe3+ and additionally at the cationic amino acid arginine, which is also located at the active center. Tweezing-ABS has been proven to selectively and effectively enrich metalloenzymes.
UR - http://www.scopus.com/inward/record.url?scp=26444589278&partnerID=8YFLogxK
U2 - 10.1021/ac050977s
DO - 10.1021/ac050977s
M3 - Article
C2 - 16194067
AN - SCOPUS:26444589278
VL - 77
SP - 6113
EP - 6117
JO - Analytical chemistry
JF - Analytical chemistry
SN - 0003-2700
IS - 19
ER -