Turbine–Diffuser Interaction

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoktor der Ingenieurwissenschaften
Gradverleihende Hochschule
Betreut von
  • Jörg Reinhart Seume, Betreuer*in
Datum der Verleihung des Grades13 Nov. 2020
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2021

Abstract

Diffusoren steigern die Leistung sowie den Wirkungsgrad von Gasturbinen, indem sie den Gegendruck der Turbine herabsenken und somit den Arbeitsumsatz in der Turbine erhöhen. Jedoch ist die Auslegung von Diffusoren herausfordernd. Dies ist auf die inhärente Neigung von Strömungen zurückzuführen, unter Einwirkung adverser Druckgradienten, wie sie in Diffusoren vorliegen, abzulösen und somit den Nutzen des Diffusors zunichte zu machen. Dieser Umstand wird dadurch verschärft, dass kürzere Diffusoren mit folglich größeren Öffnungswinkeln und somit ausgeprägteren adversen Druckgradienten wünschenswert sind, um Totaldruckverluste und Kosten zu senken. Die bisherige Forschung hat gezeigt, dass die Sekundärströmungsstrukturen in der Ab- strömung der Turbine durchaus positiv auf die Grenzschicht des Diffusors einwirken können. In dieser Arbeit wird eine neuartige Theorie der Turbine-Diffusor-Interaktion vorgestellt. Genauer gesagt, adressiert diese Theorie die Stabilisation der Diffusor-Grenzschichten durch Radialspaltwirbel eines stromauf liegenden Rotors. Die Theorie liefert ein Grundgerüst für die Charakterisierung des Radialspaltwirbels basierend auf integralen Stufenkennzahlen. Die Stufenkennzahlen Leistungszahl, Durch- flusszahl, Abströmwinkel und dimensionslose Schaufelwechselfrequenz wurden als die ausschlaggebenden Faktoren der Intensität, Orientierung sowie des Tastgrads der Radi- alspaltwirbel identifiziert. Diese Parameter wurden zu einer Stabilisationskennzahl zusam- mengeführt, welche als Vorhersagewerkzeug für die zuströmbedingungsabhängige Leis- tungsfähigkeit des Diffusors dient. Eine Reihe an Hypothesen wird aus der Theorie abgeleitet und anschließend anhand partiell skalenauflösender Simulationen sowie experimenteller Daten bestätigt. Zusätzlich wurde eine Vorhersagemethode für die wirbelinduzierte Grenzschichtstabilisa- tion in Ringdiffusoren entwickelt. Es wird gezeigt, dass deren Ergebnisse zur vorgestellten Theorie konsistent sind.

Zitieren

Turbine–Diffuser Interaction. / Mimic, Dajan.
Hannover, 2021. 145 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Mimic, D 2021, 'Turbine–Diffuser Interaction', Doktor der Ingenieurwissenschaften, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/10777
Mimic, D. (2021). Turbine–Diffuser Interaction. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/10777
Mimic D. Turbine–Diffuser Interaction. Hannover, 2021. 145 S. doi: 10.15488/10777
Mimic, Dajan. / Turbine–Diffuser Interaction. Hannover, 2021. 145 S.
Download
@phdthesis{e696b5f95a6b4b259e3bbe07da7fc2c6,
title = "Turbine–Diffuser Interaction",
abstract = "Diffusers increase the power output and cycle efficiency of gas turbines by reducing the back pressure of the turbine, thus, increasing the work extracted from the fluid by the turbine. They are, however, challenging to design. This is due to the inherent predisposition of the flow to separate under the adverse pressure gradients generated by diffusers, hence negating their benefit. This condition of imminent flow separation is aggravated because diffuser designers seek ever-shorter diffusers with correspondingly steeper opening angles and, thus, higher adverse pressure gradients, to reduce frictional losses and costs. This work presents a novel theory of turbine–diffuser interaction. More specifically, this theory addresses the stabilisation of diffuser boundary layers induced by tip-leakage vortices from an upstream rotor. The theory provides a framework to characterise tip-leakage vortices based upon integral stage-design parameters. The stage parameters loading coefficient, flow coefficient, swirl an- gle, and non-dimensional blade-passing frequency have been identified as the determinants for the intensity, orientation, and duty cycle of the tip-leakage vortices. These parameters have been condensed into the stabilisation number as a predictor for the inflow-dependent diffuser performance. Several hypotheses are derived from the theory and subsequently confirmed using partially scale-resolving simulations and experimental data. Additionally, a prediction method for the vortex-induced boundary-layer stabilisation in annular diffusers has been developed. The results of the prediction method are shown to be consistent with the theory presented.",
author = "Dajan Mimic",
note = "Doctoral thesis",
year = "2021",
doi = "10.15488/10777",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Turbine–Diffuser Interaction

AU - Mimic, Dajan

N1 - Doctoral thesis

PY - 2021

Y1 - 2021

N2 - Diffusers increase the power output and cycle efficiency of gas turbines by reducing the back pressure of the turbine, thus, increasing the work extracted from the fluid by the turbine. They are, however, challenging to design. This is due to the inherent predisposition of the flow to separate under the adverse pressure gradients generated by diffusers, hence negating their benefit. This condition of imminent flow separation is aggravated because diffuser designers seek ever-shorter diffusers with correspondingly steeper opening angles and, thus, higher adverse pressure gradients, to reduce frictional losses and costs. This work presents a novel theory of turbine–diffuser interaction. More specifically, this theory addresses the stabilisation of diffuser boundary layers induced by tip-leakage vortices from an upstream rotor. The theory provides a framework to characterise tip-leakage vortices based upon integral stage-design parameters. The stage parameters loading coefficient, flow coefficient, swirl an- gle, and non-dimensional blade-passing frequency have been identified as the determinants for the intensity, orientation, and duty cycle of the tip-leakage vortices. These parameters have been condensed into the stabilisation number as a predictor for the inflow-dependent diffuser performance. Several hypotheses are derived from the theory and subsequently confirmed using partially scale-resolving simulations and experimental data. Additionally, a prediction method for the vortex-induced boundary-layer stabilisation in annular diffusers has been developed. The results of the prediction method are shown to be consistent with the theory presented.

AB - Diffusers increase the power output and cycle efficiency of gas turbines by reducing the back pressure of the turbine, thus, increasing the work extracted from the fluid by the turbine. They are, however, challenging to design. This is due to the inherent predisposition of the flow to separate under the adverse pressure gradients generated by diffusers, hence negating their benefit. This condition of imminent flow separation is aggravated because diffuser designers seek ever-shorter diffusers with correspondingly steeper opening angles and, thus, higher adverse pressure gradients, to reduce frictional losses and costs. This work presents a novel theory of turbine–diffuser interaction. More specifically, this theory addresses the stabilisation of diffuser boundary layers induced by tip-leakage vortices from an upstream rotor. The theory provides a framework to characterise tip-leakage vortices based upon integral stage-design parameters. The stage parameters loading coefficient, flow coefficient, swirl an- gle, and non-dimensional blade-passing frequency have been identified as the determinants for the intensity, orientation, and duty cycle of the tip-leakage vortices. These parameters have been condensed into the stabilisation number as a predictor for the inflow-dependent diffuser performance. Several hypotheses are derived from the theory and subsequently confirmed using partially scale-resolving simulations and experimental data. Additionally, a prediction method for the vortex-induced boundary-layer stabilisation in annular diffusers has been developed. The results of the prediction method are shown to be consistent with the theory presented.

U2 - 10.15488/10777

DO - 10.15488/10777

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren