Details
Originalsprache | Englisch |
---|---|
Aufsatznummer | 106071 |
Fachzeitschrift | Soil Dynamics and Earthquake Engineering |
Jahrgang | 132 |
Publikationsstatus | Veröffentlicht - Mai 2020 |
Extern publiziert | Ja |
Abstract
The efficiency of tuned mass dampers (TMDs) in along-wind response mitigation of a wind turbine with consideration of blade coupling and soil-structure interaction (SSI) is investigated. The wind turbine tower is modeled as a multi-degree of freedom (MDOF) with three blades are connected as a MDOF system to the tower. The along-wind drag forces are generated using Shinozuka method. The effect of SSI is considered using frequency independent parameters. The equation of motion for the coupled system is numerically solved in time domain using the Newmark Beta method. In order to observe the changes in response of the system, the blades are subjected to rotating wind field to include the effects of the blade-tower interaction and rotor movement. The peak displacement, peak acceleration, root mean square (RMS) displacement, RMS acceleration, and power spectral density (PSD) of the wind turbine are the response quantities considered for comparative studies. Single TMD (STMD) and distributed multiple TMDs (d-MTMDs) are used to mitigate the wind response of the tower. Parametric studies are conducted to find the most suitable parameters (such as mass ratio, frequency bandwidth, and damping ratios) of the TMD schemes to increase the effectiveness of the strategy in the mitigation of the wind response of wind turbine with/without consideration of SSI. It is concluded that wind response of the wind turbine is amplified with inclusion of the SSI, blade-tower interaction, and rotor movement. In addition, it is concluded that the d-MTMDs are more effective and robust in wind response control of the wind turbine as compared to the STMD.
ASJC Scopus Sachgebiete
- Ingenieurwesen (insg.)
- Tief- und Ingenieurbau
- Erdkunde und Planetologie (insg.)
- Geotechnik und Ingenieurgeologie
- Agrar- und Biowissenschaften (insg.)
- Bodenkunde
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Soil Dynamics and Earthquake Engineering, Jahrgang 132, 106071, 05.2020.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Tuned mass dampers in wind response control of wind turbine with soil-structure interaction
AU - Gaur, Shashwat
AU - Elias, Said
AU - Höbbel, Thomas
AU - Matsagar, Vasant A.
AU - Thiele, Klaus
N1 - Publisher Copyright: © 2020 Elsevier Ltd
PY - 2020/5
Y1 - 2020/5
N2 - The efficiency of tuned mass dampers (TMDs) in along-wind response mitigation of a wind turbine with consideration of blade coupling and soil-structure interaction (SSI) is investigated. The wind turbine tower is modeled as a multi-degree of freedom (MDOF) with three blades are connected as a MDOF system to the tower. The along-wind drag forces are generated using Shinozuka method. The effect of SSI is considered using frequency independent parameters. The equation of motion for the coupled system is numerically solved in time domain using the Newmark Beta method. In order to observe the changes in response of the system, the blades are subjected to rotating wind field to include the effects of the blade-tower interaction and rotor movement. The peak displacement, peak acceleration, root mean square (RMS) displacement, RMS acceleration, and power spectral density (PSD) of the wind turbine are the response quantities considered for comparative studies. Single TMD (STMD) and distributed multiple TMDs (d-MTMDs) are used to mitigate the wind response of the tower. Parametric studies are conducted to find the most suitable parameters (such as mass ratio, frequency bandwidth, and damping ratios) of the TMD schemes to increase the effectiveness of the strategy in the mitigation of the wind response of wind turbine with/without consideration of SSI. It is concluded that wind response of the wind turbine is amplified with inclusion of the SSI, blade-tower interaction, and rotor movement. In addition, it is concluded that the d-MTMDs are more effective and robust in wind response control of the wind turbine as compared to the STMD.
AB - The efficiency of tuned mass dampers (TMDs) in along-wind response mitigation of a wind turbine with consideration of blade coupling and soil-structure interaction (SSI) is investigated. The wind turbine tower is modeled as a multi-degree of freedom (MDOF) with three blades are connected as a MDOF system to the tower. The along-wind drag forces are generated using Shinozuka method. The effect of SSI is considered using frequency independent parameters. The equation of motion for the coupled system is numerically solved in time domain using the Newmark Beta method. In order to observe the changes in response of the system, the blades are subjected to rotating wind field to include the effects of the blade-tower interaction and rotor movement. The peak displacement, peak acceleration, root mean square (RMS) displacement, RMS acceleration, and power spectral density (PSD) of the wind turbine are the response quantities considered for comparative studies. Single TMD (STMD) and distributed multiple TMDs (d-MTMDs) are used to mitigate the wind response of the tower. Parametric studies are conducted to find the most suitable parameters (such as mass ratio, frequency bandwidth, and damping ratios) of the TMD schemes to increase the effectiveness of the strategy in the mitigation of the wind response of wind turbine with/without consideration of SSI. It is concluded that wind response of the wind turbine is amplified with inclusion of the SSI, blade-tower interaction, and rotor movement. In addition, it is concluded that the d-MTMDs are more effective and robust in wind response control of the wind turbine as compared to the STMD.
KW - Blade-tower coupling
KW - d-MTMDs
KW - Soil-structure interaction
KW - Tuned mass dampers
KW - Wind turbine model
UR - http://www.scopus.com/inward/record.url?scp=85080066857&partnerID=8YFLogxK
U2 - 10.1016/j.soildyn.2020.106071
DO - 10.1016/j.soildyn.2020.106071
M3 - Article
AN - SCOPUS:85080066857
VL - 132
JO - Soil Dynamics and Earthquake Engineering
JF - Soil Dynamics and Earthquake Engineering
SN - 0267-7261
M1 - 106071
ER -