Trivializable sub-Riemannian structures on spheres

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • W. Bauer
  • K. Furutani
  • C. Iwasaki

Externe Organisationen

  • Georg-August-Universität Göttingen
  • Tokyo University of Science
  • University of Hyogo
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Seiten (von - bis)361-385
Seitenumfang25
FachzeitschriftBulletin des Sciences Mathematiques
Jahrgang137
Ausgabenummer3
PublikationsstatusVeröffentlicht - 24 Sept. 2012
Extern publiziertJa

Abstract

We classify the trivializable sub-Riemannian structures on odd-dimensional spheres SN that are induced by a Clifford module structure of RN+1. The underlying bracket generating distribution is of step two and spanned by a set of global linear vector fields X1, . . ., Xm. As a result we show that such structures only exist in the cases where N=3, 7, 15. The corresponding hypo-elliptic sub-Laplacians δsub are defined as the (negative) sum of squares of the vector fields Xj. In the case of a trivializable rank four distribution on S7 and a trivializable rank eight distribution on S15 we obtain a part of the spectrum of δsub. We also remark that in both cases there is a relation between the eigenfunctions and Jacobi polynomials.

ASJC Scopus Sachgebiete

Zitieren

Trivializable sub-Riemannian structures on spheres. / Bauer, W.; Furutani, K.; Iwasaki, C.
in: Bulletin des Sciences Mathematiques, Jahrgang 137, Nr. 3, 24.09.2012, S. 361-385.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Bauer W, Furutani K, Iwasaki C. Trivializable sub-Riemannian structures on spheres. Bulletin des Sciences Mathematiques. 2012 Sep 24;137(3):361-385. doi: 10.1016/j.bulsci.2012.09.004
Bauer, W. ; Furutani, K. ; Iwasaki, C. / Trivializable sub-Riemannian structures on spheres. in: Bulletin des Sciences Mathematiques. 2012 ; Jahrgang 137, Nr. 3. S. 361-385.
Download
@article{69af95792ccd4e92b55bd390fe9aab00,
title = "Trivializable sub-Riemannian structures on spheres",
abstract = "We classify the trivializable sub-Riemannian structures on odd-dimensional spheres SN that are induced by a Clifford module structure of RN+1. The underlying bracket generating distribution is of step two and spanned by a set of global linear vector fields X1, . . ., Xm. As a result we show that such structures only exist in the cases where N=3, 7, 15. The corresponding hypo-elliptic sub-Laplacians δsub are defined as the (negative) sum of squares of the vector fields Xj. In the case of a trivializable rank four distribution on S7 and a trivializable rank eight distribution on S15 we obtain a part of the spectrum of δsub. We also remark that in both cases there is a relation between the eigenfunctions and Jacobi polynomials.",
keywords = "Clifford algebra, Jacobi polynomials, Spectrum, Sub-Laplacian",
author = "W. Bauer and K. Furutani and C. Iwasaki",
note = "Funding Information: * Corresponding author. Tel.: +49(0)551 397749; fax: +49(0)551 3922985. E-mail addresses: wbauer@uni-math.gwdg.de (W. Bauer), furutani_kenro@ma.noda.tus.ac.jp (K. Furutani), iwasaki@sci.u-hyogo.ac.jp (C. Iwasaki). 1 Supported by the DFG (Deutsche Forschungsgemeinschaft). 2 Supported by the “FY 2011 Researcher Exchange Program between JSPS and DAAD”. 3 Partially supported by the Grant-in-aid for Scientific Research (C) No. 20540218 of JSPS (Japan Society for the Promotion of Science). Copyright: Copyright 2013 Elsevier B.V., All rights reserved.",
year = "2012",
month = sep,
day = "24",
doi = "10.1016/j.bulsci.2012.09.004",
language = "English",
volume = "137",
pages = "361--385",
journal = "Bulletin des Sciences Mathematiques",
issn = "0007-4497",
publisher = "Elsevier Masson SAS",
number = "3",

}

Download

TY - JOUR

T1 - Trivializable sub-Riemannian structures on spheres

AU - Bauer, W.

AU - Furutani, K.

AU - Iwasaki, C.

N1 - Funding Information: * Corresponding author. Tel.: +49(0)551 397749; fax: +49(0)551 3922985. E-mail addresses: wbauer@uni-math.gwdg.de (W. Bauer), furutani_kenro@ma.noda.tus.ac.jp (K. Furutani), iwasaki@sci.u-hyogo.ac.jp (C. Iwasaki). 1 Supported by the DFG (Deutsche Forschungsgemeinschaft). 2 Supported by the “FY 2011 Researcher Exchange Program between JSPS and DAAD”. 3 Partially supported by the Grant-in-aid for Scientific Research (C) No. 20540218 of JSPS (Japan Society for the Promotion of Science). Copyright: Copyright 2013 Elsevier B.V., All rights reserved.

PY - 2012/9/24

Y1 - 2012/9/24

N2 - We classify the trivializable sub-Riemannian structures on odd-dimensional spheres SN that are induced by a Clifford module structure of RN+1. The underlying bracket generating distribution is of step two and spanned by a set of global linear vector fields X1, . . ., Xm. As a result we show that such structures only exist in the cases where N=3, 7, 15. The corresponding hypo-elliptic sub-Laplacians δsub are defined as the (negative) sum of squares of the vector fields Xj. In the case of a trivializable rank four distribution on S7 and a trivializable rank eight distribution on S15 we obtain a part of the spectrum of δsub. We also remark that in both cases there is a relation between the eigenfunctions and Jacobi polynomials.

AB - We classify the trivializable sub-Riemannian structures on odd-dimensional spheres SN that are induced by a Clifford module structure of RN+1. The underlying bracket generating distribution is of step two and spanned by a set of global linear vector fields X1, . . ., Xm. As a result we show that such structures only exist in the cases where N=3, 7, 15. The corresponding hypo-elliptic sub-Laplacians δsub are defined as the (negative) sum of squares of the vector fields Xj. In the case of a trivializable rank four distribution on S7 and a trivializable rank eight distribution on S15 we obtain a part of the spectrum of δsub. We also remark that in both cases there is a relation between the eigenfunctions and Jacobi polynomials.

KW - Clifford algebra

KW - Jacobi polynomials

KW - Spectrum

KW - Sub-Laplacian

UR - http://www.scopus.com/inward/record.url?scp=84876704534&partnerID=8YFLogxK

U2 - 10.1016/j.bulsci.2012.09.004

DO - 10.1016/j.bulsci.2012.09.004

M3 - Article

AN - SCOPUS:84876704534

VL - 137

SP - 361

EP - 385

JO - Bulletin des Sciences Mathematiques

JF - Bulletin des Sciences Mathematiques

SN - 0007-4497

IS - 3

ER -