Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 593-607 |
Seitenumfang | 15 |
Fachzeitschrift | PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science |
Jahrgang | 92 |
Ausgabenummer | 5 |
Frühes Online-Datum | 2 Aug. 2024 |
Publikationsstatus | Veröffentlicht - Okt. 2024 |
Abstract
Variations in the tropospheric phase delay pose a primary challenge to achieving precise displacement measurements in Interferometric Synthetic Aperture Radar (InSAR) analysis. This study presents a cluster-based empirical tropospheric phase correction approach to analyze land subsidence rates from large-scale Sentinel‑1 data stacks. Our method identifies the optimum number of clusters in individual interferograms for K‑means clustering, and segments extensive interferograms into areas with consistent tropospheric phase delay behaviors. It then performs tropospheric phase correction based on empirical topography-phase correlation, addressing stratified and broad-scale tropospheric phase delays. Applied to a six-year data stack along a 1000-km track in Iran, we demonstrate that this approach enhances interferogram quality by reducing the standard deviation by 50% and lowering the semivariance of the interferograms to 20 cm2 at distances up to 800 km in 97% of the interferograms. Additionally, the corrected time series of deformation shows a 40% reduction in the root mean square of residuals at the most severely deformed points. By analyzing the corrected interferograms, we show that our method improves the efficiency of country-scale InSAR surveys to detect and quantify present-day land subsidence in Iran, which is essential for groundwater management and sustainable water resource planning.
ASJC Scopus Sachgebiete
- Sozialwissenschaften (insg.)
- Geografie, Planung und Entwicklung
- Physik und Astronomie (insg.)
- Instrumentierung
- Erdkunde und Planetologie (insg.)
- Erdkunde und Planetologie (sonstige)
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, Jahrgang 92, Nr. 5, 10.2024, S. 593-607.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Treating Tropospheric Phase Delay in Large-scale Sentinel-1 Stacks to Analyze Land Subsidence
AU - Haghshenas Haghighi, Mahmud
AU - Motagh, Mahdi
N1 - Publisher Copyright: © The Author(s) 2024.
PY - 2024/10
Y1 - 2024/10
N2 - Variations in the tropospheric phase delay pose a primary challenge to achieving precise displacement measurements in Interferometric Synthetic Aperture Radar (InSAR) analysis. This study presents a cluster-based empirical tropospheric phase correction approach to analyze land subsidence rates from large-scale Sentinel‑1 data stacks. Our method identifies the optimum number of clusters in individual interferograms for K‑means clustering, and segments extensive interferograms into areas with consistent tropospheric phase delay behaviors. It then performs tropospheric phase correction based on empirical topography-phase correlation, addressing stratified and broad-scale tropospheric phase delays. Applied to a six-year data stack along a 1000-km track in Iran, we demonstrate that this approach enhances interferogram quality by reducing the standard deviation by 50% and lowering the semivariance of the interferograms to 20 cm2 at distances up to 800 km in 97% of the interferograms. Additionally, the corrected time series of deformation shows a 40% reduction in the root mean square of residuals at the most severely deformed points. By analyzing the corrected interferograms, we show that our method improves the efficiency of country-scale InSAR surveys to detect and quantify present-day land subsidence in Iran, which is essential for groundwater management and sustainable water resource planning.
AB - Variations in the tropospheric phase delay pose a primary challenge to achieving precise displacement measurements in Interferometric Synthetic Aperture Radar (InSAR) analysis. This study presents a cluster-based empirical tropospheric phase correction approach to analyze land subsidence rates from large-scale Sentinel‑1 data stacks. Our method identifies the optimum number of clusters in individual interferograms for K‑means clustering, and segments extensive interferograms into areas with consistent tropospheric phase delay behaviors. It then performs tropospheric phase correction based on empirical topography-phase correlation, addressing stratified and broad-scale tropospheric phase delays. Applied to a six-year data stack along a 1000-km track in Iran, we demonstrate that this approach enhances interferogram quality by reducing the standard deviation by 50% and lowering the semivariance of the interferograms to 20 cm2 at distances up to 800 km in 97% of the interferograms. Additionally, the corrected time series of deformation shows a 40% reduction in the root mean square of residuals at the most severely deformed points. By analyzing the corrected interferograms, we show that our method improves the efficiency of country-scale InSAR surveys to detect and quantify present-day land subsidence in Iran, which is essential for groundwater management and sustainable water resource planning.
KW - InSAR
KW - Land Subsidence
KW - Sentinel‑1
KW - Tropospheric Correction
UR - http://www.scopus.com/inward/record.url?scp=85200354772&partnerID=8YFLogxK
U2 - 10.1007/s41064-024-00304-z
DO - 10.1007/s41064-024-00304-z
M3 - Article
AN - SCOPUS:85200354772
VL - 92
SP - 593
EP - 607
JO - PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science
JF - PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science
SN - 2512-2789
IS - 5
ER -