Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 2113-2132 |
Seitenumfang | 20 |
Fachzeitschrift | Journal of Differential Equations |
Jahrgang | 264 |
Ausgabenummer | 3 |
Frühes Online-Datum | 6 Nov. 2017 |
Publikationsstatus | Veröffentlicht - 5 Feb. 2018 |
Abstract
We prove the existence of a travelling wave solution for a gravity-driven thin film of a viscous and incompressible dilatant fluid coated with an insoluble surfactant. The governing system of second order partial differential equations for the film's height h and the surfactant's concentration γ are derived by means of lubrication theory applied to the non-Newtonian Navier–Stokes equations.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Analysis
- Mathematik (insg.)
- Angewandte Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Journal of Differential Equations, Jahrgang 264, Nr. 3, 05.02.2018, S. 2113-2132.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Travelling waves in dilatant non-Newtonian thin films
AU - Escher, Joachim
AU - Lienstromberg, Christina
N1 - Funding information: The authors would like to thank the Isaac Newton Institute for Mathematical Sciences for support and hospitality during the programme Nonlinear Water Waves when work on this paper was undertaken. This work was supported by: EPSRC Grant Number EP/K032208/1 . The authors are grateful to the anonymous reviewers for the careful reading of the initial manuscript.
PY - 2018/2/5
Y1 - 2018/2/5
N2 - We prove the existence of a travelling wave solution for a gravity-driven thin film of a viscous and incompressible dilatant fluid coated with an insoluble surfactant. The governing system of second order partial differential equations for the film's height h and the surfactant's concentration γ are derived by means of lubrication theory applied to the non-Newtonian Navier–Stokes equations.
AB - We prove the existence of a travelling wave solution for a gravity-driven thin film of a viscous and incompressible dilatant fluid coated with an insoluble surfactant. The governing system of second order partial differential equations for the film's height h and the surfactant's concentration γ are derived by means of lubrication theory applied to the non-Newtonian Navier–Stokes equations.
KW - Dilatant fluid
KW - Non-Newtonian fluid
KW - Surfactant
KW - Thin film
KW - Travelling wave
UR - http://www.scopus.com/inward/record.url?scp=85032938351&partnerID=8YFLogxK
U2 - 10.1016/j.jde.2017.10.015
DO - 10.1016/j.jde.2017.10.015
M3 - Article
AN - SCOPUS:85032938351
VL - 264
SP - 2113
EP - 2132
JO - Journal of Differential Equations
JF - Journal of Differential Equations
SN - 0022-0396
IS - 3
ER -