Trapping Ion Coulomb Crystals in an Optical Lattice

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Autoren

  • Daniel Hoenig
  • Fabian Thielemann
  • Leon Karpa
  • Thomas Walker
  • Amir Mohammadi
  • Tobias Schaetz

Organisationseinheiten

Externe Organisationen

  • Albert-Ludwigs-Universität Freiburg
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
Aufsatznummer133003
Seitenumfang7
FachzeitschriftPhysical review letters
Jahrgang132
Ausgabenummer13
PublikationsstatusVeröffentlicht - 29 März 2024

Abstract

We report the optical trapping of multiple ions localized at individual lattice sites of a one-dimensional optical lattice. We observe a fivefold increased range of axial dc-electric field strength for which ions can be optically trapped with high probability and an increase of the axial eigenfrequency by 2 orders of magnitude compared to an optical dipole trap without interference but of similar intensity. Our findings motivate an alternative pathway to extend arrays of trapped ions in size and dimension, enabling quantum simulations with particles interacting at long range.

ASJC Scopus Sachgebiete

Zitieren

Trapping Ion Coulomb Crystals in an Optical Lattice. / Hoenig, Daniel; Thielemann, Fabian; Karpa, Leon et al.
in: Physical review letters, Jahrgang 132, Nr. 13, 133003, 29.03.2024.

Publikation: Beitrag in FachzeitschriftArtikelForschungPeer-Review

Hoenig, D, Thielemann, F, Karpa, L, Walker, T, Mohammadi, A & Schaetz, T 2024, 'Trapping Ion Coulomb Crystals in an Optical Lattice', Physical review letters, Jg. 132, Nr. 13, 133003. https://doi.org/10.48550/arXiv.2306.12518, https://doi.org/10.1103/PhysRevLett.132.133003
Hoenig, D., Thielemann, F., Karpa, L., Walker, T., Mohammadi, A., & Schaetz, T. (2024). Trapping Ion Coulomb Crystals in an Optical Lattice. Physical review letters, 132(13), Artikel 133003. https://doi.org/10.48550/arXiv.2306.12518, https://doi.org/10.1103/PhysRevLett.132.133003
Hoenig D, Thielemann F, Karpa L, Walker T, Mohammadi A, Schaetz T. Trapping Ion Coulomb Crystals in an Optical Lattice. Physical review letters. 2024 Mär 29;132(13):133003. doi: 10.48550/arXiv.2306.12518, 10.1103/PhysRevLett.132.133003
Hoenig, Daniel ; Thielemann, Fabian ; Karpa, Leon et al. / Trapping Ion Coulomb Crystals in an Optical Lattice. in: Physical review letters. 2024 ; Jahrgang 132, Nr. 13.
Download
@article{8244906a181942babeef8d73471c5cb8,
title = "Trapping Ion Coulomb Crystals in an Optical Lattice",
abstract = "We report the optical trapping of multiple ions localized at individual lattice sites of a one-dimensional optical lattice. We observe a fivefold increased range of axial dc-electric field strength for which ions can be optically trapped with high probability and an increase of the axial eigenfrequency by 2 orders of magnitude compared to an optical dipole trap without interference but of similar intensity. Our findings motivate an alternative pathway to extend arrays of trapped ions in size and dimension, enabling quantum simulations with particles interacting at long range.",
author = "Daniel Hoenig and Fabian Thielemann and Leon Karpa and Thomas Walker and Amir Mohammadi and Tobias Schaetz",
note = "Funding Information: This project has received funding from the European Research Council (ERC) under the European Union{\textquoteright}s Horizon 2020 research and innovation program (Grant No. 648330) and the German Science Foundation (DFG) via SCHA 973/9-1. D. H. and F. T. acknowledge support from the German Science Foundation (DFG) within RTG 2717. A. M. and T. W. acknowledge additional support from the Georg H. Endress Foundation. L. K. acknowledges support from the German Science Foundation (DFG) via the Heisenberg program KA 4215/2-1.",
year = "2024",
month = mar,
day = "29",
doi = "10.48550/arXiv.2306.12518",
language = "English",
volume = "132",
journal = "Physical review letters",
issn = "0031-9007",
publisher = "American Physical Society",
number = "13",

}

Download

TY - JOUR

T1 - Trapping Ion Coulomb Crystals in an Optical Lattice

AU - Hoenig, Daniel

AU - Thielemann, Fabian

AU - Karpa, Leon

AU - Walker, Thomas

AU - Mohammadi, Amir

AU - Schaetz, Tobias

N1 - Funding Information: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant No. 648330) and the German Science Foundation (DFG) via SCHA 973/9-1. D. H. and F. T. acknowledge support from the German Science Foundation (DFG) within RTG 2717. A. M. and T. W. acknowledge additional support from the Georg H. Endress Foundation. L. K. acknowledges support from the German Science Foundation (DFG) via the Heisenberg program KA 4215/2-1.

PY - 2024/3/29

Y1 - 2024/3/29

N2 - We report the optical trapping of multiple ions localized at individual lattice sites of a one-dimensional optical lattice. We observe a fivefold increased range of axial dc-electric field strength for which ions can be optically trapped with high probability and an increase of the axial eigenfrequency by 2 orders of magnitude compared to an optical dipole trap without interference but of similar intensity. Our findings motivate an alternative pathway to extend arrays of trapped ions in size and dimension, enabling quantum simulations with particles interacting at long range.

AB - We report the optical trapping of multiple ions localized at individual lattice sites of a one-dimensional optical lattice. We observe a fivefold increased range of axial dc-electric field strength for which ions can be optically trapped with high probability and an increase of the axial eigenfrequency by 2 orders of magnitude compared to an optical dipole trap without interference but of similar intensity. Our findings motivate an alternative pathway to extend arrays of trapped ions in size and dimension, enabling quantum simulations with particles interacting at long range.

UR - http://www.scopus.com/inward/record.url?scp=85189468400&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2306.12518

DO - 10.48550/arXiv.2306.12518

M3 - Article

C2 - 38613289

AN - SCOPUS:85189468400

VL - 132

JO - Physical review letters

JF - Physical review letters

SN - 0031-9007

IS - 13

M1 - 133003

ER -