Towards automated phenotyping in plant tissue culture

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Autorschaft

  • Hans Lukas Bethge
Forschungs-netzwerk anzeigen

Details

OriginalspracheEnglisch
QualifikationDoctor rerum horticulturarum
Gradverleihende Hochschule
Betreut von
Datum der Verleihung des Grades18 Aug. 2023
ErscheinungsortHannover
PublikationsstatusVeröffentlicht - 2023

Abstract

Die pflanzliche In-vitro-Kultur umfasst wichtige grundlegende Methoden der modernen Pflanzenforschung, -vermehrung und -züchtung. Innovative wissenschaftliche Ansätze zur Wei-terentwicklung des Kultivierungsprozess können daher weitreichenden Einfluss auf viele unter-schiedliche Bereiche haben. Insbesondere die Automatisierung kann die Effizienz der In-vitro-Vermehrung steigern, die derzeit durch die intensive manuelle Arbeit beschränkt wird. Automa-tisierte Phänotypisierung von In-vitro-Kulturen ermöglicht es, die Erfassung von manuellen de-struktiven Endpunktmessungen auf eine kontinuierliche, objektive und digitale Quantifizierung der Pflanzenmerkmale auszuweiten. Dies kann zu einem besseren Verständnis entscheidender Entwicklungsprozesse führen und die Entstehung physiologischer Störungen zu klären. Ziel dieser Dissertation war es, das Potential optischer Erfassungsmethoden und des maschinellen Lernens für die pflanzliche In-vitro-Kultur unter interdisziplinären Gesichtspunk-ten zu untersuchen und exemplarisch aufzuzeigen. Ein neuartiger Phänotypisierungsroboter zur automatisierten, zerstörungsfreien, mehrdimensionalen In-situ-Erfassung von Pflanzenmerkmalen wurde auf Basis kostengünstiger Sensortechnik entwickelt. Unterschiedliche Sensortechnologien, darunter eine RGB-Kamera, ein Laser-Distanzsensor, ein Mikrospektrometer und eine Wärmebildkamera, wurden teils zum ersten Mal unter diesen schwierigen Bedingungen eingesetzt und im Hinblick auf die resultierende Datenqualität und Realisierbarkeit bewertet. Neben der Entwicklung dynamischer, halbautomatischer Datenverarbeitungspipelines, wurde die automatische Erfassung multisensorischer Daten über eine gesamte Subkulturpassage der In-vitro-Kulturen demonstriert. Dadurch konnte erstmals Zeitrafferaufnahmen verschiedener Ent-wicklungsprozesse von pflanzlichen In-vitro-Kulturen und das Auftreten von physiologischen Störungen in situ erfasst werden. Die digitale Bestimmung relevanter Kenngrößen wie der proji-zierten Pflanzenfläche, der durchschnittlichen Bestandshöhe und der maximalen Pflanzenhöhe wurde demonstriert, die als wichtige Deskriptoren für das pflanzliche Wachstum dienen können. Darüber hinaus konnte eine neue Methode für die Pflanzenwissenschaften entwickelt werden, um die Wasseraufnahme von Pflanzen und die Verdunstung von Kulturmedien auf der Grundlage einer zerstörungsfreien Quantifizierung des Medienvolumens zu überwachen. Der Phänotypisierungsroboter wurde zur Untersuchung der Entstehung der Wachs-tumsanomalie Hyperhydrizität eingesetzt. Hierfür wurden ein digitales Monitoring der Morpho-logie der Explantate mit begleitenden spektroskopischen Untersuchungen des Reflexionsverhal-tens im Zeitverlauf durchgeführt. Die durch Spektralanalyse identifizierten optischen Merkmale, wie den reduzierter Reflexionsgrad und die Hauptabsorptionspeaks der Hyperhydrizität in der SWIR-Region, konnten als die wichtigsten Unterscheidungsmerkmale durch ein Support-Vektor-Maschine-Model mit einer Genauigkeit von 84% auf dem Testsatz validiert werden und damit Machbarkeit der spektrale Identifizierung von Hyperhydrizität aufzeigen. Darüber wurde für die automatische Detektion der Hyperhydrizität auf Basis von RGB-Bildern ein neuronales Netz trainiert. Die hohen Kennzahlen im Testdatensatz wie die Präzision von 83,8 % und einem Recall von 95,7 % unterstreichen das Vorhandensein einer für die Erkennung ausreichenden Anzahl von Unterscheidungsmerkmalen innerhalb der räumlichen RGB-Daten. Somit konnte ein zweiter An-satz der automatischen Detektion von Hyperhydrizität durch RGB-Bilder präsentiert werden. Die resultierenden Sensordatensätze des Phänotypisierungsroboters wurden als unter-stützendes Werkzeug eines E-Learning Moduls zur Steigerung digitaler Kompetenzen im Bereich Sensortechnik, Datenverarbeitung und -auswertung in der Hochschulausbildung erprobt und an-hand der Befragung von Studierenden evaluiert. Diese Machbarkeitsstudie ergab eine insgesamt hohe Akzeptanz durch die Studierenden mit 70% guten bis sehr guten Bewertungen. Mit zuneh-mender Komplexität der Lernaufgabe fühlten sich die Studierenden jedoch überfordert und bewerteten die jeweilige Session schlechter. Zusammenfassend zielt diese Arbeit darauf ab den Weg für einen verstärkten Einsatz der automatisierten, sensorbasierten Phänotypisierung in Kombination mit den Techniken des ma-schinellen Lernens der Forschung und der kommerziellen Mikrovermehrung zukünftig zu ebnen.

Zitieren

Towards automated phenotyping in plant tissue culture. / Bethge, Hans Lukas.
Hannover, 2023. 117 S.

Publikation: Qualifikations-/StudienabschlussarbeitDissertation

Bethge, HL 2023, 'Towards automated phenotyping in plant tissue culture', Doctor rerum horticulturarum, Gottfried Wilhelm Leibniz Universität Hannover, Hannover. https://doi.org/10.15488/14601
Bethge, H. L. (2023). Towards automated phenotyping in plant tissue culture. [Dissertation, Gottfried Wilhelm Leibniz Universität Hannover]. https://doi.org/10.15488/14601
Bethge HL. Towards automated phenotyping in plant tissue culture. Hannover, 2023. 117 S. doi: 10.15488/14601
Bethge, Hans Lukas. / Towards automated phenotyping in plant tissue culture. Hannover, 2023. 117 S.
Download
@phdthesis{f3dfdac8d15a41c5855994c54e242b4b,
title = "Towards automated phenotyping in plant tissue culture",
abstract = "Plant in vitro culture techniques comprise important fundamental methods of modern plant research, propagation and breeding. Innovative scientific approaches to further develop the cultivation process, therefore, have the potential of far-reaching impact on many different areas. In particular, automation can increase efficiency of in vitro propagation, a domain currently con-strained by intensive manual labor. Automated phenotyping of plant in vitro culture bears the potential to extend the evaluation of in vitro plants from manual destructive endpoint measurements to continuous and objective digital quantification of plant traits. Consequently, this can lead to a better understanding of crucial developmental processes and will help to clarify the emergence of physiological disorders of plant in vitro cultures. The aim of this dissertation was to investigate and exemplify the potential of optical sensing methods and machine learning in plant in vitro culture from an interdisciplinary point of view. A novel robotic phenotyping system for automated, non-destructive, multi-dimensional in situ detection of plant traits based on low-cost sensor technology was con-ceptualized, developed and tested. Various sensor technologies, including an RGB camera, a laser distance sensor, a micro spectrometer, and a thermal camera, were applied partly for the first time under these challenging conditions and evaluated with respect to the resulting data quality and feasibility. In addition to the development of new dynamic, semi-automated data processing pipelines, the automatic acquisition of multisensory data across an entire subculture passage of plant in vitro cultures was demonstrated. This allowed novel time series images of different developmental processes of plant in vitro cultures and the emergence of physiological disorders to be captured in situ for the first time. The digital determination of relevant parameters such as projected plant area, average canopy height, and maximum plant height, was demonstrated, which can be used as critical descriptors of plant growth performance in vitro. In addition, a novel method of non-destructive quantification of media volume by depth data was developed which may allow monitoring of water uptake by plants and evaporation from the culture medium. The phenotyping system was used to investigate the etiology of the physiological growth anomaly hyperhydricity. Therefore, digital monitoring of the morphology and along with spectro-scopic studies of reflectance behavior over time were conducted. The new optical characteristics identified by classical spectral analysis, such as reduced reflectance and major absorption peaks of hyperhydricity in the SWIR region could be validated to be the main discriminating features by a trained support vector machine with a balanced accuracy of 84% on test set, demonstrating the feasibility of a spectral detection of hyperhydricity. In addition, an RGB image dataset was used for automated detection of hyperhydricity using deep neural networks. The high-performance metrics with precision of 83.8% and recall of 95.7% on test images underscore the presence of for detection sufficient number of discriminating features within the spatial RGB data, thus a second approach is proposed for automatic detection of hyperhydricity based on RGB images. The resulting multimodal sensor data sets of the robotic phenotyping system were tested as a supporting tool of an e-learning module in higher education to increase the digital skills in the field of sensing, data processing and data analysis, and evaluated by means of a student survey. This proof-of-concept study revealed an overall high level of acceptance and advocacy by students with 70% good to very good rating. However, with increased complexity of the learning task, stu-dents experienced excessive demands and rated the respective session lower. In summary, this study is expected to pave the way for increased use of automated sensor-based phenotyping in conjunction with machine learning in plant research and commercial mi-cropropagation in the future.",
author = "Bethge, {Hans Lukas}",
year = "2023",
doi = "10.15488/14601",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Towards automated phenotyping in plant tissue culture

AU - Bethge, Hans Lukas

PY - 2023

Y1 - 2023

N2 - Plant in vitro culture techniques comprise important fundamental methods of modern plant research, propagation and breeding. Innovative scientific approaches to further develop the cultivation process, therefore, have the potential of far-reaching impact on many different areas. In particular, automation can increase efficiency of in vitro propagation, a domain currently con-strained by intensive manual labor. Automated phenotyping of plant in vitro culture bears the potential to extend the evaluation of in vitro plants from manual destructive endpoint measurements to continuous and objective digital quantification of plant traits. Consequently, this can lead to a better understanding of crucial developmental processes and will help to clarify the emergence of physiological disorders of plant in vitro cultures. The aim of this dissertation was to investigate and exemplify the potential of optical sensing methods and machine learning in plant in vitro culture from an interdisciplinary point of view. A novel robotic phenotyping system for automated, non-destructive, multi-dimensional in situ detection of plant traits based on low-cost sensor technology was con-ceptualized, developed and tested. Various sensor technologies, including an RGB camera, a laser distance sensor, a micro spectrometer, and a thermal camera, were applied partly for the first time under these challenging conditions and evaluated with respect to the resulting data quality and feasibility. In addition to the development of new dynamic, semi-automated data processing pipelines, the automatic acquisition of multisensory data across an entire subculture passage of plant in vitro cultures was demonstrated. This allowed novel time series images of different developmental processes of plant in vitro cultures and the emergence of physiological disorders to be captured in situ for the first time. The digital determination of relevant parameters such as projected plant area, average canopy height, and maximum plant height, was demonstrated, which can be used as critical descriptors of plant growth performance in vitro. In addition, a novel method of non-destructive quantification of media volume by depth data was developed which may allow monitoring of water uptake by plants and evaporation from the culture medium. The phenotyping system was used to investigate the etiology of the physiological growth anomaly hyperhydricity. Therefore, digital monitoring of the morphology and along with spectro-scopic studies of reflectance behavior over time were conducted. The new optical characteristics identified by classical spectral analysis, such as reduced reflectance and major absorption peaks of hyperhydricity in the SWIR region could be validated to be the main discriminating features by a trained support vector machine with a balanced accuracy of 84% on test set, demonstrating the feasibility of a spectral detection of hyperhydricity. In addition, an RGB image dataset was used for automated detection of hyperhydricity using deep neural networks. The high-performance metrics with precision of 83.8% and recall of 95.7% on test images underscore the presence of for detection sufficient number of discriminating features within the spatial RGB data, thus a second approach is proposed for automatic detection of hyperhydricity based on RGB images. The resulting multimodal sensor data sets of the robotic phenotyping system were tested as a supporting tool of an e-learning module in higher education to increase the digital skills in the field of sensing, data processing and data analysis, and evaluated by means of a student survey. This proof-of-concept study revealed an overall high level of acceptance and advocacy by students with 70% good to very good rating. However, with increased complexity of the learning task, stu-dents experienced excessive demands and rated the respective session lower. In summary, this study is expected to pave the way for increased use of automated sensor-based phenotyping in conjunction with machine learning in plant research and commercial mi-cropropagation in the future.

AB - Plant in vitro culture techniques comprise important fundamental methods of modern plant research, propagation and breeding. Innovative scientific approaches to further develop the cultivation process, therefore, have the potential of far-reaching impact on many different areas. In particular, automation can increase efficiency of in vitro propagation, a domain currently con-strained by intensive manual labor. Automated phenotyping of plant in vitro culture bears the potential to extend the evaluation of in vitro plants from manual destructive endpoint measurements to continuous and objective digital quantification of plant traits. Consequently, this can lead to a better understanding of crucial developmental processes and will help to clarify the emergence of physiological disorders of plant in vitro cultures. The aim of this dissertation was to investigate and exemplify the potential of optical sensing methods and machine learning in plant in vitro culture from an interdisciplinary point of view. A novel robotic phenotyping system for automated, non-destructive, multi-dimensional in situ detection of plant traits based on low-cost sensor technology was con-ceptualized, developed and tested. Various sensor technologies, including an RGB camera, a laser distance sensor, a micro spectrometer, and a thermal camera, were applied partly for the first time under these challenging conditions and evaluated with respect to the resulting data quality and feasibility. In addition to the development of new dynamic, semi-automated data processing pipelines, the automatic acquisition of multisensory data across an entire subculture passage of plant in vitro cultures was demonstrated. This allowed novel time series images of different developmental processes of plant in vitro cultures and the emergence of physiological disorders to be captured in situ for the first time. The digital determination of relevant parameters such as projected plant area, average canopy height, and maximum plant height, was demonstrated, which can be used as critical descriptors of plant growth performance in vitro. In addition, a novel method of non-destructive quantification of media volume by depth data was developed which may allow monitoring of water uptake by plants and evaporation from the culture medium. The phenotyping system was used to investigate the etiology of the physiological growth anomaly hyperhydricity. Therefore, digital monitoring of the morphology and along with spectro-scopic studies of reflectance behavior over time were conducted. The new optical characteristics identified by classical spectral analysis, such as reduced reflectance and major absorption peaks of hyperhydricity in the SWIR region could be validated to be the main discriminating features by a trained support vector machine with a balanced accuracy of 84% on test set, demonstrating the feasibility of a spectral detection of hyperhydricity. In addition, an RGB image dataset was used for automated detection of hyperhydricity using deep neural networks. The high-performance metrics with precision of 83.8% and recall of 95.7% on test images underscore the presence of for detection sufficient number of discriminating features within the spatial RGB data, thus a second approach is proposed for automatic detection of hyperhydricity based on RGB images. The resulting multimodal sensor data sets of the robotic phenotyping system were tested as a supporting tool of an e-learning module in higher education to increase the digital skills in the field of sensing, data processing and data analysis, and evaluated by means of a student survey. This proof-of-concept study revealed an overall high level of acceptance and advocacy by students with 70% good to very good rating. However, with increased complexity of the learning task, stu-dents experienced excessive demands and rated the respective session lower. In summary, this study is expected to pave the way for increased use of automated sensor-based phenotyping in conjunction with machine learning in plant research and commercial mi-cropropagation in the future.

U2 - 10.15488/14601

DO - 10.15488/14601

M3 - Doctoral thesis

CY - Hannover

ER -

Von denselben Autoren