Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 6062-6070 |
Seitenumfang | 9 |
Fachzeitschrift | Analytical chemistry |
Jahrgang | 93 |
Ausgabenummer | 15 |
Frühes Online-Datum | 7 Apr. 2021 |
Publikationsstatus | Veröffentlicht - 20 Apr. 2021 |
Abstract
Printed circuit board (PCB) based drift tube ion mobility spectrometers enable the use of state-of-the-art production techniques to manufacture compact devices with excellent performance at minimum cost. The new PCB ion mobility spectrometer (PCB-IMS) presented here is equipped with either a 140 MBq tritium or a 95 MBq nickel-63 ionization source and consists of a combination of horizontally arranged 6-layer PCBs for the drift and reaction regions and vertically arranged PCBs for interfacing the ionization source, ion shutter, and detector. The design allows the reproducible manufacturing and thus comparison of different IMS topologies. Here, we investigate different ion shutters, field-switching, Bradbury-Nielsen, and tristate and their effects on resolving power and limits of detection considering two different ionization region geometries and ionization sources, tritium and nickel-63. It is shown that the high resolving power of RP > 80 at low drift voltage of 3 kV and short drift length of 50 mm can be achieved independent of the used ion shutter mechanism and reaction region geometry. While the resolving power of all ion shutters is excellent, the Bradbury-Nielsen shutter shows a pronounced discrimination of slow ion species when using short shutter opening times for small initial ion cloud widths, as required for high resolving power. Thus, the intensity of the proton-bound dimer of 2-pentanone is reduced by 30% compared to the signal intensity obtained with both the field-switching and tristate shutter. The detection limits employing the Bradbury-Nielsen shutter and a 50 mm reaction region as required for nickel-63 are 58 pptv for the protonated monomer and 3.4 ppbv for the proton-bound dimer of 2-pentanone. The detection limits achieved with the tristate shutter utilizing the same reaction region are slightly higher for the protonated monomer at 68 pptv, but lower for the proton-bound dimer at 2 ppbv due to the advanced ion shutter principle not discriminating slow ions. However, the lowest detection limits of 13 pptv and 301 pptv can be achieved with the field-switching shutter and a 2 mm reaction region, sufficient for a tritium ionization source.
ASJC Scopus Sachgebiete
- Chemie (insg.)
- Analytische Chemie
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Analytical chemistry, Jahrgang 93, Nr. 15, 20.04.2021, S. 6062-6070.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Toward Compact High-Performance Ion Mobility Spectrometers
T2 - Ion Gating in Ion Mobility Spectrometry
AU - Bohnhorst, Alexander
AU - Kirk, Ansgar T.
AU - Zimmermann, Stefan
PY - 2021/4/20
Y1 - 2021/4/20
N2 - Printed circuit board (PCB) based drift tube ion mobility spectrometers enable the use of state-of-the-art production techniques to manufacture compact devices with excellent performance at minimum cost. The new PCB ion mobility spectrometer (PCB-IMS) presented here is equipped with either a 140 MBq tritium or a 95 MBq nickel-63 ionization source and consists of a combination of horizontally arranged 6-layer PCBs for the drift and reaction regions and vertically arranged PCBs for interfacing the ionization source, ion shutter, and detector. The design allows the reproducible manufacturing and thus comparison of different IMS topologies. Here, we investigate different ion shutters, field-switching, Bradbury-Nielsen, and tristate and their effects on resolving power and limits of detection considering two different ionization region geometries and ionization sources, tritium and nickel-63. It is shown that the high resolving power of RP > 80 at low drift voltage of 3 kV and short drift length of 50 mm can be achieved independent of the used ion shutter mechanism and reaction region geometry. While the resolving power of all ion shutters is excellent, the Bradbury-Nielsen shutter shows a pronounced discrimination of slow ion species when using short shutter opening times for small initial ion cloud widths, as required for high resolving power. Thus, the intensity of the proton-bound dimer of 2-pentanone is reduced by 30% compared to the signal intensity obtained with both the field-switching and tristate shutter. The detection limits employing the Bradbury-Nielsen shutter and a 50 mm reaction region as required for nickel-63 are 58 pptv for the protonated monomer and 3.4 ppbv for the proton-bound dimer of 2-pentanone. The detection limits achieved with the tristate shutter utilizing the same reaction region are slightly higher for the protonated monomer at 68 pptv, but lower for the proton-bound dimer at 2 ppbv due to the advanced ion shutter principle not discriminating slow ions. However, the lowest detection limits of 13 pptv and 301 pptv can be achieved with the field-switching shutter and a 2 mm reaction region, sufficient for a tritium ionization source.
AB - Printed circuit board (PCB) based drift tube ion mobility spectrometers enable the use of state-of-the-art production techniques to manufacture compact devices with excellent performance at minimum cost. The new PCB ion mobility spectrometer (PCB-IMS) presented here is equipped with either a 140 MBq tritium or a 95 MBq nickel-63 ionization source and consists of a combination of horizontally arranged 6-layer PCBs for the drift and reaction regions and vertically arranged PCBs for interfacing the ionization source, ion shutter, and detector. The design allows the reproducible manufacturing and thus comparison of different IMS topologies. Here, we investigate different ion shutters, field-switching, Bradbury-Nielsen, and tristate and their effects on resolving power and limits of detection considering two different ionization region geometries and ionization sources, tritium and nickel-63. It is shown that the high resolving power of RP > 80 at low drift voltage of 3 kV and short drift length of 50 mm can be achieved independent of the used ion shutter mechanism and reaction region geometry. While the resolving power of all ion shutters is excellent, the Bradbury-Nielsen shutter shows a pronounced discrimination of slow ion species when using short shutter opening times for small initial ion cloud widths, as required for high resolving power. Thus, the intensity of the proton-bound dimer of 2-pentanone is reduced by 30% compared to the signal intensity obtained with both the field-switching and tristate shutter. The detection limits employing the Bradbury-Nielsen shutter and a 50 mm reaction region as required for nickel-63 are 58 pptv for the protonated monomer and 3.4 ppbv for the proton-bound dimer of 2-pentanone. The detection limits achieved with the tristate shutter utilizing the same reaction region are slightly higher for the protonated monomer at 68 pptv, but lower for the proton-bound dimer at 2 ppbv due to the advanced ion shutter principle not discriminating slow ions. However, the lowest detection limits of 13 pptv and 301 pptv can be achieved with the field-switching shutter and a 2 mm reaction region, sufficient for a tritium ionization source.
UR - http://www.scopus.com/inward/record.url?scp=85104979321&partnerID=8YFLogxK
U2 - 10.1021/acs.analchem.0c04140
DO - 10.1021/acs.analchem.0c04140
M3 - Article
AN - SCOPUS:85104979321
VL - 93
SP - 6062
EP - 6070
JO - Analytical chemistry
JF - Analytical chemistry
SN - 0003-2700
IS - 15
ER -