Details
Originalsprache | Englisch |
---|---|
Seiten (von - bis) | 1135-1166 |
Seitenumfang | 32 |
Fachzeitschrift | Quantum Information and Computation |
Jahrgang | 17 |
Ausgabenummer | 13-14 |
Publikationsstatus | Veröffentlicht - 2017 |
Extern publiziert | Ja |
Abstract
We provide a cohomological framework for contextuality of quantum mechanics that is suited to describing contextuality as a resource in measurement-based quantum computation. This framework applies to the parity proofs first discussed by Mermin, as well as a different type of contextuality proofs based on symmetry transformations. The topological arguments presented can be used in the state-dependent and the state-independent case.
ASJC Scopus Sachgebiete
- Mathematik (insg.)
- Theoretische Informatik
- Physik und Astronomie (insg.)
- Statistische und nichtlineare Physik
- Physik und Astronomie (insg.)
- Kern- und Hochenergiephysik
- Mathematik (insg.)
- Mathematische Physik
- Physik und Astronomie (insg.)
- Allgemeine Physik und Astronomie
- Informatik (insg.)
- Theoretische Informatik und Mathematik
Zitieren
- Standard
- Harvard
- Apa
- Vancouver
- BibTex
- RIS
in: Quantum Information and Computation, Jahrgang 17, Nr. 13-14, 2017, S. 1135-1166.
Publikation: Beitrag in Fachzeitschrift › Artikel › Forschung › Peer-Review
}
TY - JOUR
T1 - Topological Proofs of Contextuality in Qunatum Mechanics
AU - Okay, Cihan
AU - Roberts, S. A.M.
AU - Bartlett, Stephen D.
AU - Raussendorf, Robert
N1 - Funding Information: CO acknowledges funding from NSERC. SDB acknowledges support from the ARC via the Centre of Excellence in Engineered Quantum Systems (EQuS), project number CE110001013. RR is supported by NSERC and Cifar, and is scholar of the Cifar Quantum Information Processing program.
PY - 2017
Y1 - 2017
N2 - We provide a cohomological framework for contextuality of quantum mechanics that is suited to describing contextuality as a resource in measurement-based quantum computation. This framework applies to the parity proofs first discussed by Mermin, as well as a different type of contextuality proofs based on symmetry transformations. The topological arguments presented can be used in the state-dependent and the state-independent case.
AB - We provide a cohomological framework for contextuality of quantum mechanics that is suited to describing contextuality as a resource in measurement-based quantum computation. This framework applies to the parity proofs first discussed by Mermin, as well as a different type of contextuality proofs based on symmetry transformations. The topological arguments presented can be used in the state-dependent and the state-independent case.
KW - Cohomology
KW - Quantum contextuality
UR - http://www.scopus.com/inward/record.url?scp=85051143046&partnerID=8YFLogxK
U2 - 10.48550/arXiv.1611.07332
DO - 10.48550/arXiv.1611.07332
M3 - Article
AN - SCOPUS:85051143046
VL - 17
SP - 1135
EP - 1166
JO - Quantum Information and Computation
JF - Quantum Information and Computation
SN - 1533-7146
IS - 13-14
ER -